

Educating and Engaging the Public on the Community Wastewater Evaluation

Erin Moore, PE, Senior Project Manager Kyle Kortright, Staff Engineer

GL2	Grafton has a tradition of working together
	Greg Lane, 9/23/2022

Presentation Outline

- Project Background
- Project Goals
- Analysis Approach
- Work Completed
- Next Steps
- Community Feedback & Questions

Project Background

The Problem?

- Public Health Concerns
- Environmental Health Concerns
- Economic Health Concerns
- Potential Solutions?
 - Consider a community wastewater system
 - Consider a community drinking water system
- Why Now?
 - Funding availability
 - Current concerns with water quality

2022 Water & Wastewater Feasibility Study 30% Report Presentation

Project Goals

 Collaborative effort between Town, Vermont DEC, Grafton Community, and Tighe & Bond

- Community involvement & input from start to finish
- Understand current issues & desire for a community wastewater or drinking water system
- Develop a report which compares several alternatives including construction costs, O&M costs, and potential user fees. This is called the <u>Preliminary</u> <u>Engineering Report</u>.

Analysis Approach

Process

Project Completed in Four Steps:

- STEP 1: 30% Preliminary Engineering Report where we are today!
- STEP 2: 60% Preliminary Engineering Report Public Meeting
- STEP 3: 90% Preliminary Engineering Report Public Meeting
- STEP 4: Final Preliminary Engineering Report Public Hearing

Project Analysis Approach

Tighe&Bond

Step 1

Service Area Needs Analysis & Delineation

Service Area Needs Analysis & Delineation

- What areas have current issues?
- What areas have the potential for issues?
- What areas would benefit the most?

Service Area Considerations

- Previous reports & survey responses
- Parcel sizes
- Soils & restrictive layers
- Wetlands & flood zones
- Village center & planning buffer

Previous Reports & Surveys

- Several water & wastewater studies completed since 1992
- Conclusions of Previous Reports:
 - 70% parcels less than one acre, 43% are less than 0.5 acres
 - 70% of septic systems in Village constructed before 1970 or unknown
 - 2001 survey -> 70% of respondents felt that a community septic system was needed for the Village although 97% reported no issues with their septic system
 - Approximately 60% of parcels in Village do not meet one or more set-back requirements

Tighe&Bond

Step 1

Parcel Sizes

 Small parcels have leach field constraints and difficulty meeting setback requirements

Step 1

 Smallest parcels located in the Village Center

Soils & Restrictive Layers

- Shallow groundwater & shallow depth to bedrock negatively impacts leachfield performance
- Isolated areas with anticipated shallow depth to water table
- Higher elevations anticipated to have shallow depth to bedrock

Soil Group

Potential Shallow Depth to Water

Potential Shallow Depth to Bedrock

2022 Water & Wastewater Feasibility Study 30% Report Presentation

Wetlands & Flood Zones

- Septic systems must meet setback requirements from water bodies and wetlands
- Septic systems should not be within flood zone

Village Center & Planning Buffer

- Vermont Planning Atlas delineates Village Center
- Parcels included in 0.25mile buffer are eligible for funding
- Important consideration for district delineation
- Parcels outside of buffer can be considered if issues exist

Village Center Planning Buffer (0.25 mile) Village Center Boundary Downtown District Boundary Town Boundaries VT State Boundary

2022 Water & Wastewater Feasibility Study 30% Report Presentation

Step 1

Service Area Delineation

- Proposed service area includes most parcels within the Village 0.25-mile planning buffer
- 84 Parcels Total
 - 56 Residential
 - 24 Commercial
 - 4 Vacant

30% Report Review

Service Area Delineation – Northern Extent

2022 Water & Wastewater Feasibility Study 30% Report Presentation

30% Report Review

• Service Area Delineation – Southern Extent

Flow Estimate

Flow Estimate

Flow Estimate for Service Area

- Flow estimates based on VT DEC Environmental Protection Rules Chapter 1, Section 1-803
- Estimates based on grand list parcel information, information about businesses, and questions answered by Town
- Flow estimate for service area = <u>42,600</u>
 <u>gpd</u> including 10% factor for future expansion/growth

Details of use	Units	Gallons Per Day (gpd) Per Unit*
Assembly Are	a; Conference Room with no	o food service
for each use	seat	4
Assembly Area; Banquet Hall	; Conference Room with cate the lot	ered food service prepared
for each use	seat per meal	8
for each use	seat Barber Shop; Hair Salon	14
no hair washing	chair	50
hair washing	chair	150
hair salon	stylist, operator	32
barber shop; hair salon	employee (not a barber, stylist or operator)	13
Beer	r, Wine, or Spirits Tasting Ro	oom
no public toilets, may have seats but no meal served	tasting room	100
no public toilets, may have seats but no meal served	employee	13
with public toilets and seats but no meal served	tasting room	300
with public toilets and seats if meal served	seat licensed by the Department of Health	use <i>Restaurant</i> or 300, whichever is greater
	Brewerv	
	Drenely	
brewerv	gallon of beer brewed	4.5

2022 Water & Wastewater Feasibility Study 30% Report Presentation

Identify Alternatives

Drinking Water System

Components of a Drinking Water System

- Water Supply
- Water Distribution
- Water Storage

Preliminary Design

- Drilled wells & small pump house at Grafton Village Park property
- New ductile iron water mains & service connections
- Water Storage Tank near Fire Pond

2022 Water & Wastewater Feasibility Study

30% Report Presentation

2022 Water & Wastewater Feasibility Study 30% Report Presentation

Wastewater Systems

Components of a Wastewater System

Collection System

- Conventional
- Septic Tank **F**ffluent
- Water Resource **Recovery System**
 - Recirculating Sand Filters
 - Packed Bed Media Filters
- Return System
 - Conventional Leachfield
 - **Drip Dispersal**

- Conventional Gravity & Pumped Collection Systems
 - Typical for larger communities
 - Solids transported to water resource recover system
 - Larger diameter sewer mains installed by open cut excavation
 - Central pump stations

Step 1

Septic Tank Effluent Collection Systems

- Septic Tank Effluent Gravity (STEG)
- Septic Tank Effluent Pumped (STEP)
- Typical for smaller rural communities
- Solids remain in septic tanks
- Smaller diameter sewer mains installed by directional drilling

- Recirculating Sand Filters
 - Effluent percolates through filter bed, portion of flow is recirculated
 - Workhorse: sand media
 - Re-circulation increases oxygen content
 - Tried and true technology

- Modular Textile Media Filter Systems
 - Series of partially buried fiberglass tanks
 - Workhorse: textile media
 - Tanks are aerated
 - Small building for controls and equipment

2022 Water & Wastewater Feasibility Study 30% Report Presentation

Conventional Leachfield

- Perforated pipe in gravel trench
- Larger version of standard residential leachfield

Conventional **Septic System** Wastewater Flow Groundwater Bedrock

Drip Dispersal

 \bullet

- Small diameter pipes installed at shallow depth
 - Effluent drips into soil

2022 Water & Wastewater Feasibility Study 30% Report Presentation

Tighe&Bond

Step 1

Potential Wastewater Locations

Potential Wastewater Locations

Potential Treatment/Return Sites

- 4 potential locations identified
- Howland Mill Field and Upper Howland Mill Field eliminated due to flood zone and topography
- Two sites considered in alternatives analysis
 - Alpine Field
 - Fire Pond (AKA Grafton Village Park)

Potential Wastewater Locations

Alpine Field

- Sufficient area
- Acceptable slopes
- Isolated from Village
- Above floodplain
- Cleared agricultural field

Challenges

- Not owned by Town
- No soil testing yet

Potential Wastewater Locations

Fire Pond

- 56 acres total, ~ 4 acres usable
- Above floodplain
- Owned by Town
- Potential for multi-use
- Potential to restore park to former condition

Challenges

- Slope limits the usable area
- Forested
- 2-year time of travel may not be obtainable

Next Steps

Process

Project Completed in Four Steps:

- STEP 1: 30% Preliminary Engineering Report where we are today!
- STEP 2: 60% Preliminary Engineering Report Public Meeting
- STEP 3: 90% Preliminary Engineering Report Public Meeting
- STEP 4: Final Preliminary Engineering Report Public Hearing

Next Steps

- Next Steps
 - Incorporate Town, DEC, & Public comments
 - Develop 60% report which will include Alternatives Analysis

Community Feedback & Questions

graftonwastewaterstudy@tighebond.com

