

Water & Wastewater Feasibility Study – 60% Meeting

Erin Moore, PE, Senior Project Manager Kyle Kortright, Staff Engineer

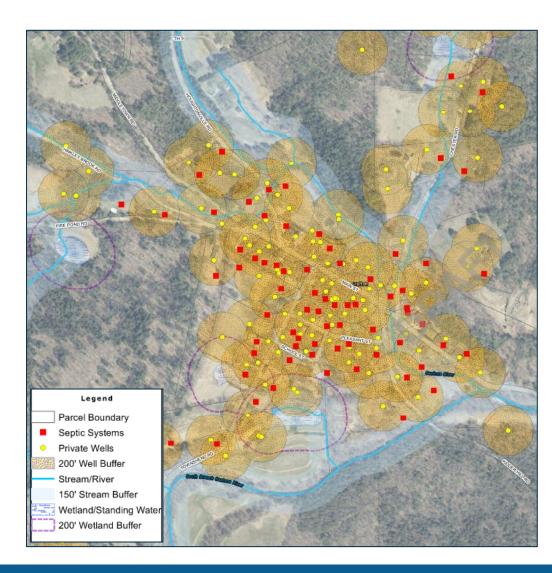
Tighe&Bond

Presentation Outline

- Project Background
- 30% Meeting Summary
- Community Drinking Water
- 60% Report Review:
 - Service Area Delineation
 - Flow Estimate
 - Potential Locations
 - Wastewater Systems
 - Alternatives
 - Cost Estimate & User Fees
- Next Steps
- Community Feedback & Questions

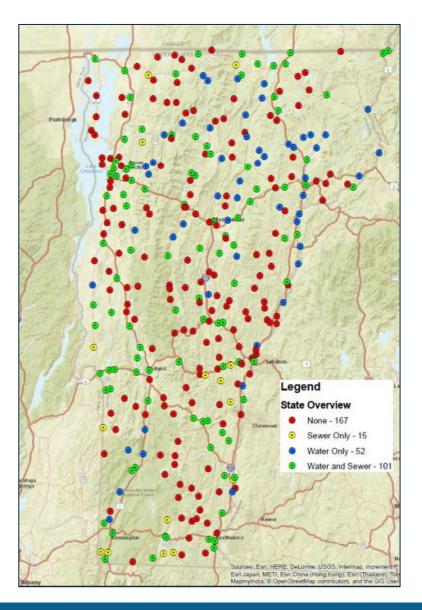
- How Did We Get Here?
 - 2020
 - Village sends out Wastewater Survey
 - 2021
 - Village submits Project Priority List Application for Wastewater ARPA Funding
 - January 2022
 - Town hires Tighe & Bond to complete feasibility study funded by DEC Engineering Planning Advance Program – no cost to Town
 - May 2022
 - Project Kick-off Meeting
 - September 2022
 - 30% Meeting
 - October 2022
 - Town is awarded \$3,968,331 for Village Wastewater Project in ARPA Funds
 - Spring/Summer 2023
 - Site Investigations, 60% Report
 - September 2023
 - 60% Meeting

 Collaborative effort between Town, Community, DEC, Tighe & Bond, Windham Regional


- Grant funded
- Project Goals
 - Find technically feasible options for drinking water and/or wastewater
 - Understand current issues & desire for a community wastewater system or a community drinking water system
 - Community involvement & input from start to finish
 - Develop a report which compares alternatives including construction costs, O&M costs, and potential user fees so the community can make an informed decision

Process

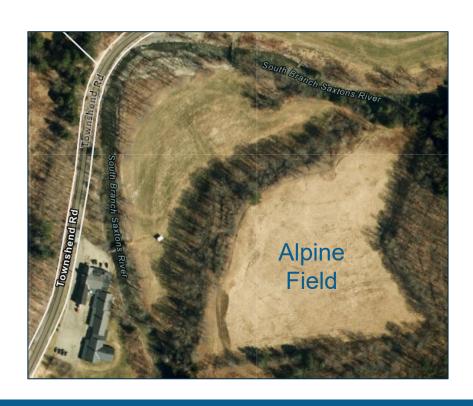
- Project Completed in Four Steps:
 - 30% Preliminary Engineering Report Public Meeting (September 2022)
 - 60% Preliminary Engineering Report Where we are today!
 - 90% Preliminary Engineering Report Public Meeting
 - Final Preliminary Engineering Report Public Hearing


Why?

- Village center is developed
- Set-backs between wells & septic systems not in compliance
- Potential environmental impacts of old/failing system
- Concerns with septic system impact on drinking water wells (PFAS)
- Limited opportunities for housing, services, and business expansion
- Difficult to establish waterintensive businesses (restaurants, breweries, etc.)

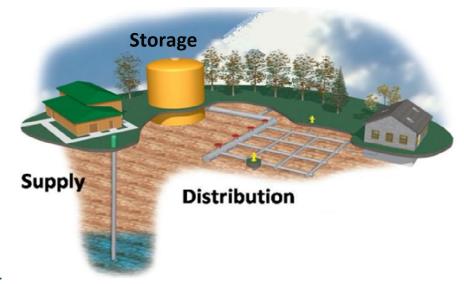
• Why Now?

- Historic funding availability
- Grafton ARPA Funding (~\$4M)
- Current concerns with water quality
- Many other Villages also considering



30% Meeting Summary

GRAFTON COMMUNITY WASTEWATER

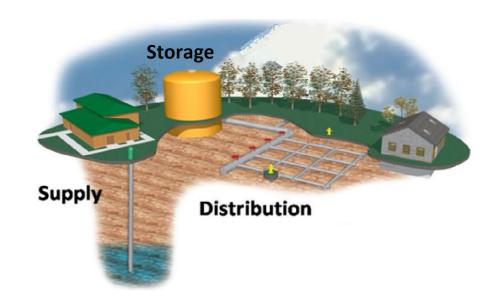

EVALUATION

- 30% Meeting in September 2022
- Developed Service Area
- Developed Flow Estimate
- Compared Two Potential Wastewater Sites
 - Discussed two primary sites for Wastewater System:
 - Village Park Site
 - Alpine Field Site
 - Alpine Field site generally preferred and looked promising on paper
- Discussed Drinking Water Systems

Drinking Water Systems

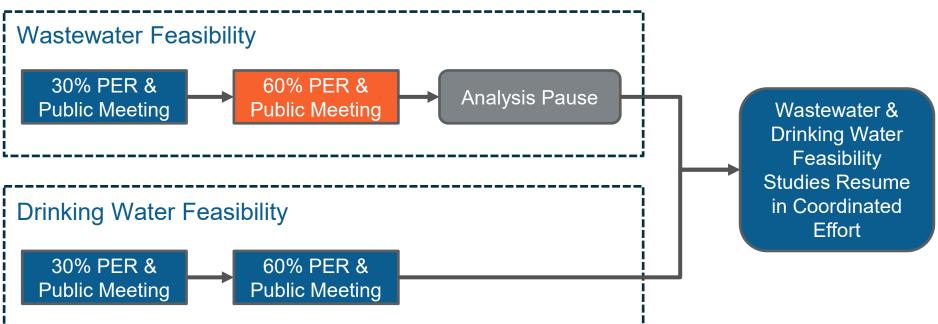
- Scope of Work included Investigation of a Community Drinking Water System
 - Water quality topic of discussion
 - PFAS in Village
 - PFAS are man-made chemicals that have been used in consumer products for many years
 - PFAS found in wells near the school
 - PFAS is persists in the environment

- Drinking Water Considerations for Grafton
 - Stand-alone Community Drinking Water System
 - Required if Village Park site is to be considered for wastewater
 - PFAS, drinking water, and wastewater are all related
 - Complicated situation


Drinking Water Systems

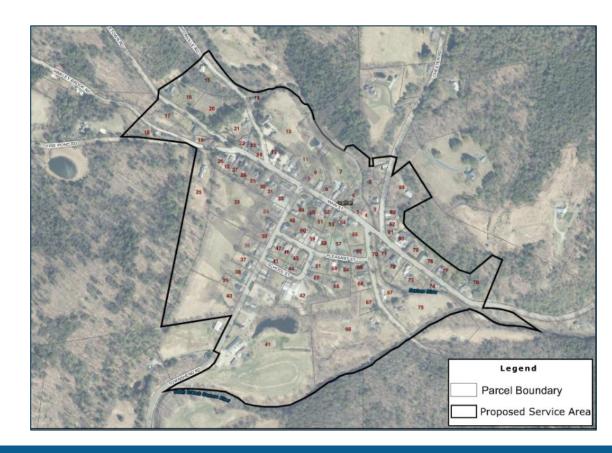
Drinking Water Permitting Challenges

- Town must demonstrate
 Technical, Managerial, and
 Financial Capacity (TMF) to
 permit a New Public Community
 Water System
- Grafton is not alone


The Path Forward?

- VT DEC has determined that a separate drinking water system preliminary engineering report (PER) is required
- Drinking water PER will be fundable through ARPA
- Consider other ways to build TMF

The Path Forward



Remaining portion of presentation focused on wastewater

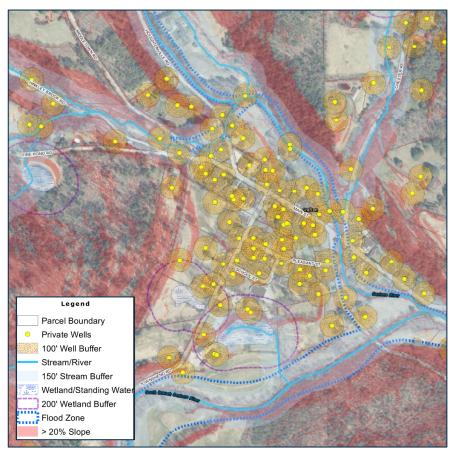
Service Area & Flow Estimate

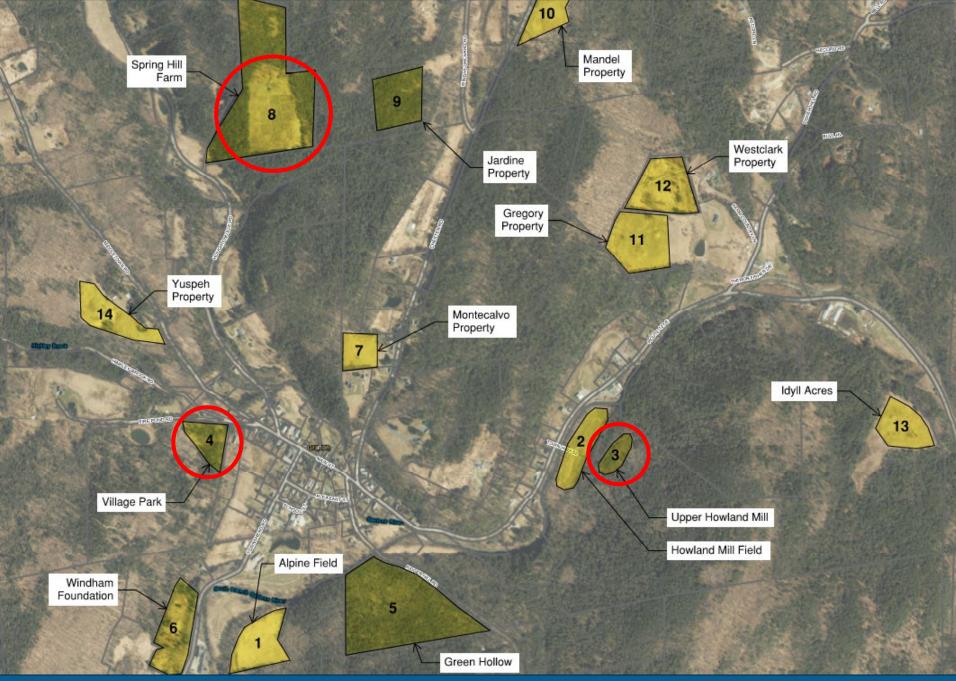
- Includes Village Center & Village Center Planning Buffer
- Service Area Stats:
 - 84 Parcels Total:
 - 56 Residential
 - 23 Commercial
 - 5 Vacant
- Total Flow Estimate= 42,500 gpd
 - Includes 10% for future expansion & growth

Potential Locations

Alpine Field Site Investigation

- Performed test pits in November 2022
- Found high seasonal groundwater condition
- Would need large mound system expensive & limit use of the site
- Back to the drawing board!




Potential Locations

Since 30% Meeting:

- Finding suitable sites became a major challenge
- Performed cluster analysis
- Considered sites for spray fields
- Considered other sites further from the Village
- Desktop Analysis Identified total of 14 potential sites, performed test pits at 2 of the sites:
 - Spring Hill Farm
 - Upper Howland Mill
- Village Park still an option for WW, but only in conjunction with a drinking water system

Potential Locations

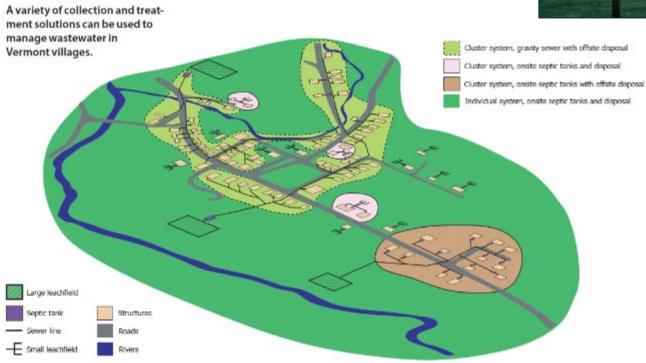
Village Park

- Confining layer 26" 43"
 below grade
- Several challenges with this site

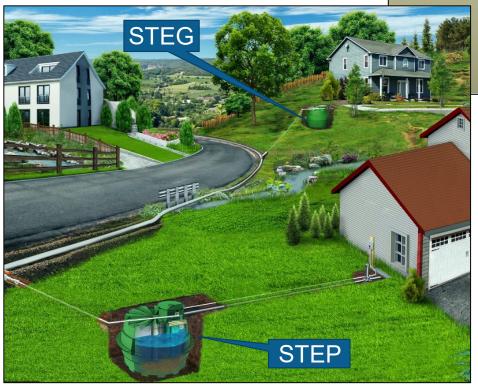
Upper Howland Mill

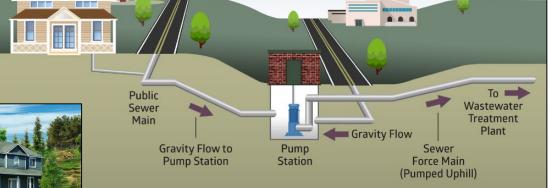
- Seasonal high groundwater only 12" – 14" below grade
- Site is too small

Spring Hill Farm


- Seasonal high groundwater approximately 26" – 36" below grade
- Site is feasible

- Focus on Decentralized,
 Soil Based Systems
 - Meets the rural aesthetic of the community





- Three Components
 - Collection System
 - Water Resource
 Recovery System
 (Treatment
 System)
 - Return System

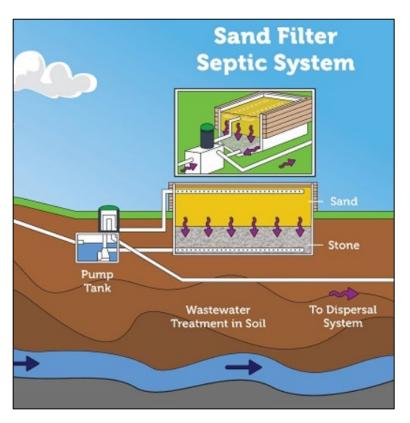
- Collection Systems
 - Conventional
 - Septic Tank Effluent

Conventional

- Typical for larger communities
- Solids transported to treatment system

Septic Tank Effluent

- Typical for smaller rural communities
- Solids remain in septic tanks
- Smaller diameter sewer mains installed by directional drilling


- Water Resource Recovery Systems
 - Only considered systems approved by Indirect Discharge Program
 - Technologies Considered:
 - Recirculating Sand Filters
 - Packed Bed Media Filters
 - Fixed Bed Bio-Reactors

- Recirculating Sand Filters
 - Effluent percolates through filter bed, portion of flow is recirculated
 - Workhorse: sand media
 - Re-circulation increases oxygen content

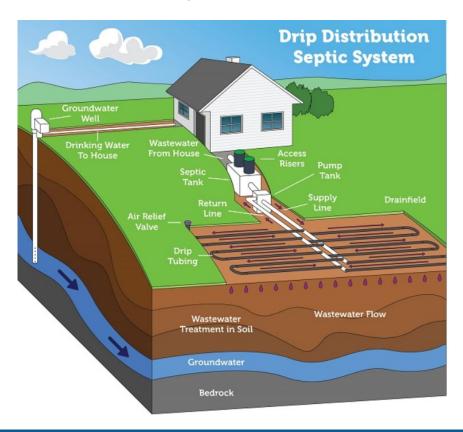
- Packed Bed Media Filters (PBF)
 - Series of partially buried fiberglass tanks
 - Workhorse: textile media
 - Small building for controls and equipment

- Fixed Bed Bioreactors
 - Effluent percolates through media
 - Blowers adds oxygen
 - Precast concrete tanks

- Return Systems
 - Technologies Considered:
 - Conventional Absorption Fields
 - Gravelless Geotextile Sand Filters (GGSF)
 - Drip Dispersal
 - Also considered sprayfield systems, however, no suitable locations for sprayfields were identified

- Conventional Absorption Fields
 - PVC pipe in gravel trench
 - Larger version of standard residential leachfield

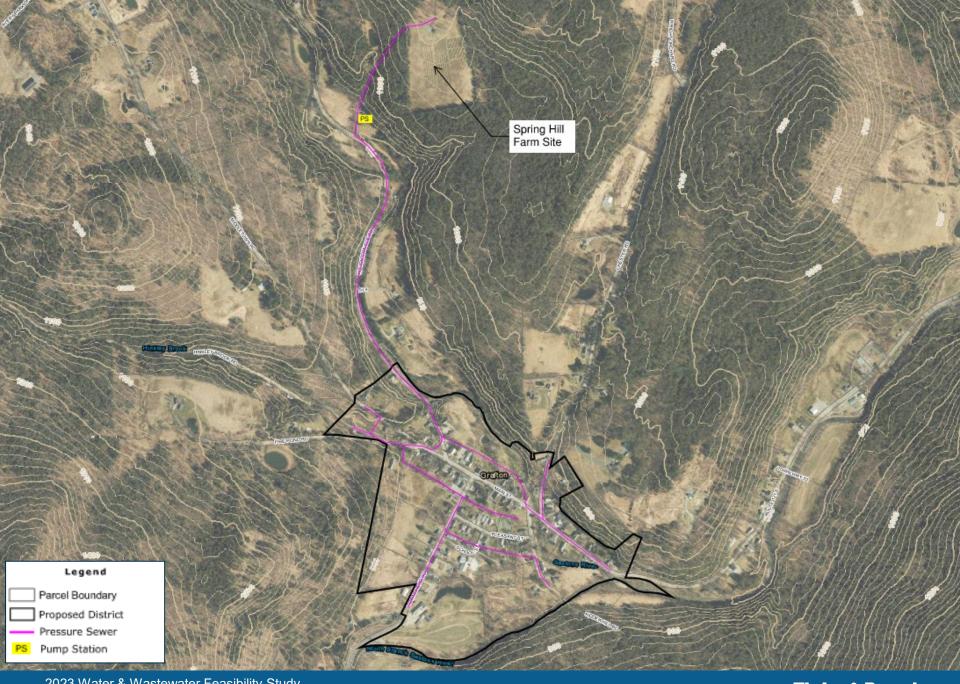
- Gravelless Geotextile Sand Filters (GGSF)
 - Innovative & Alternative Wastewater Technology
 - Consists of perforated pipe surrounded by synthetic aggregate or media, wrapped in geotextile, and placed in bed of sand



- Drip Dispersal System
 - Innovative & Alternative Wastewater Technology
 - Small diameter tubing with emitters installed relatively shallow

Alternatives

- Alternative No. 1
 - Wastewater System at Spring Hill Farm
- Alternative No. 2 (Requires DW PER)
 - Wastewater System at Village Park
 - Drinking Water System
 - Stormwater Improvements
- Alternative No. 3 (Requires DW PER)
 - Drinking Water System
- Alternative No. 4
 - Do Nothing



Alternative Analysis

- Alternative No. 1
 - Grafton Village Sewer District
 - Septic Tank Effluent
 Pumped Collection System
 - Recirculating Sand Filter
 Treatment System at Spring
 Hill Farm
 - Drip Dispersal System at Spring Hill Farm

Cost Estimate

Capital Costs

Alternative No. 1 Opinion of Probable Cost	Cost
Septic Tank Effluent Collection System	\$3,434,900
Recirculating Sand Filter Water Resource Recovery System	\$1,170,100
Drip Dispersal Return System	\$991,700
Site Work at Spring Hill Farm	\$91,700
Subtotal Construction Costs	\$5,688,400
Engineering (20%)	\$1,137,700
Contingency (20%)	\$1,137,700
Property Acquisition/Easement	\$100,00
Opinion of Probable Cost	\$8,063,800

Annual Operation & Maintenance Costs

Alternative No. 1 Annual O&M Costs	Cost
Alternative No. 1 Annual O&M	\$116,800

Cost Estimate

Recommended Project Costs	Alt. No. 1
1. Construction Costs ¹	\$6,216,000
2. Engineering Costs	
Design ²	\$483,000
Construction ¹	\$746,000
3. Other Expenses	
Local Counsel (0.75%)	\$47,000
Bond Counsel (1.25%)	\$78,000
4. Equipment	\$0
5. Land Acquisition	\$100,000
6. Project Contingency (20%) ¹	\$1,244,000
7. Total Project Costs	\$8,914,000
8. Less Other Sources of Financing ³	\$3,968,000
9. Project Costs to be Financed	\$4,946,000
10. Financing Insurance Costs	
Direct Expense (1%)	\$50,000
Stand Bond Issuance Charge (0.84%)	\$42,000
Administrative Fee (1.1%)	\$55,000
Total Project Cost to be Financed	\$5,093,000

 Cost to be financed (subtract ARPA funding)

¹Includes an escalation of 3%/year for 3 years

²Includes an escalation of 3%/year for 2 years

³ARPA funds appropriated to Grafton for Village Wastewater Project

User Costs

- EPA Sewer Affordability
 - Cost per single family user (1 ERU) < 2% of the Median Household Income (MHI)
- MHI for Grafton is \$68,125
- Grafton EPA Annual Sewer Affordability
 - < \$1,363</p>
- User fees only paid by those in the sewer district

User Costs

 Assume Clean Water State Revolving Fund (CWSRF) loan for 30 years @ 2%

ERU Based User Fees	Alt. No. 1
Total Project Cost to be Financed	\$5,093,000
Annual Dept Service Payment, 30 years @ 2%	\$227,402
Number of ERUs in Proposed Sewer District	97
Annual Cost per ERU	\$2,344
Annual O&M Costs	\$116,800
Number of ERUs in Proposed Sewer District	97
Annual O&M Cost per ERU	\$1,204
Total Annual Cost per ERU	\$3,548

> \$1.363

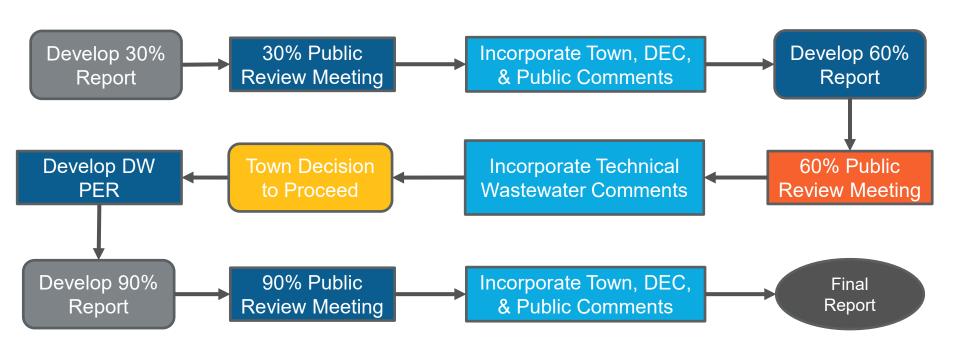
- As shown, this would not result in an affordable user fee
- How do we get to an affordable user fee?

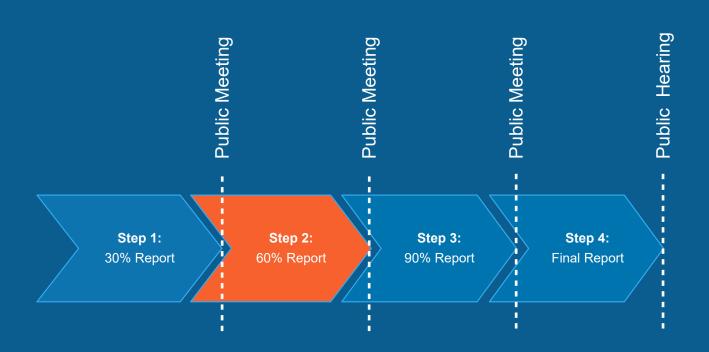
User Costs

 Let's say 100% of project cost was covered by grants

ERU Based User Fees (O&M Costs Only)	Alt. No. 1
Annual O&M Costs	\$116,800
Number of ERUs in Proposed Sewer District	97
Annual O&M Cost per ERU	\$1,204

Nearly the entire cost of the project would need to be covered by grants to meet the EPA sewer affordability criteria


- Multiple options for billing
 - ERU based
 - Assessment based
 - Flow based


Next Steps

- Get public comments and feedback from community at today's 60% meeting
- Finalize 60% report as related to WW
- Town to decide on Drinking Water PER

Community Feedback & Questions

