

GRAFTON ELEMENTARY SCHOOL

SMS SITE #2018-4794 ATLAS PROJECT #280EM00864 58 School Street, Grafton, VT, 05146

PREPARED FOR:

Kimberly Caldwell Waste Management & Prevention Division Vermont Department of Environmental Conservation 1 National Life Drive, Davis 1 Montpelier, VT 05602

PREPARED BY:

Johanna Palmer Atlas Technical Consultants, LLC 51 Knight Lane, PO Box 1486 Williston, VT 05495

CONTENTS

EXI	ECUTIVE SUMMARY		1
1.	INTRODUCTION		4
	1.1 Site Informatio	n	5
2.	CONCEPTUAL SITI	E MODEL	6
	2.1 Site Physical S	Setting and Infrastructure	6
	2.2 Source(s) & Si	te History	6
	2.3 Site Geology 8	k Hydrogeology	8
	2.4 Contaminant F	Tate & Transport	8
	2.5 Sensitive Rece	eptors and Exposure Pathways	9
3.	SUPPLEMENTAL S	ITE INVESTIGATION PROCEDURES	10
		Well Sampling	
		on	
	3.3 Additional Sub	surface Investigation	10
	3.4 Groundwater I	nvestigation	11
	3.5 Standard Oper	rating Procedures (SOPs)	11
4.	RESULTS		12
		Sampling Results	
	4.2 Groundwater S	Sampling Results	12
5.	CONCLUSIONS AN	D RECOMMENDATIONS	13
	5.1 Conclusions		13
	5.2 Recommendat	ions	14
SIG	NATURE OF REPOR	RT AUTHORS	15
TA	BLES		
	Table 1 Table 2	PFAS Concentrations – Water Supply Wells Groundwater Elevations	
	Table 3	PFAS Concentrations – Groundwater	
	1 0010 0		
FIG	BURES		
	Figure 1 Figure 2	Site Vicinity Map Site Plan	
	Figure 3	PFAS Concentrations in Water Supply Wells	
	Figure 4	Groundwater Elevation Map	
	Figure 5	PFAS Concentrations in Groundwater	
AP	PENDICES		
AP	Appendix A	Field Notes & Boring Logs	
	Appendix B	Photographs	
	Appendix C	Analytical Laboratory Reports	

EXECUTIVE SUMMARY

Atlas Technical Consultants, LLC (Atlas) prepared this report for the Vermont Department of Environmental Conservation (VTDEC) to document the Supplemental Site Investigation (SSI) performed to further define the nature and extent of per- and polyfluoroalkyl substances (PFAS) in overburden groundwater at the Grafton Elementary School (GES; herein referred to as "the Site"). The property is listed as a hazardous site SMS #2018-4794 and is located at 58 School Street, Grafton, Vermont. This SSI was performed in accordance with Atlas' Standard Operating Procedures (SOPs), Vermont's *Investigation and Remediation of Contaminated Properties Rule* (I-Rule, July 2019), and Atlas' SSI Work Plan dated April 28, 2022, which was approved by Kimberly Caldwell of the VTDEC. The VTDEC requested additional site investigation activities to address remaining data gaps at the Site in order to assist in future decision-making processes.

The GES water supply has been found to contain PFAS and the water is presently treated using granular activated carbon (GAC). Site investigations conducted by The Verterre Group (Verterre, October 12, 2018 and September 26, 2019), and a geophysical investigation by ATC Group Services (ATC, now dba Atlas; September 30, 2019), determined that PFAS is entering the Site's water supply well via a series of fractures in the bedrock, and indicated that the source of PFAS is likely the nearby shallow GES leach field that sits atop shallow bedrock (encountered at approximately 20 feet below ground surface) and possibly some PFAS contributions from nearby residential leach fields. The PFAS is suspected to have been present in floor wax and cleaning supplies used at the school and disposed of in wash water to the active onsite septic system. It is suspected that the PFAS migrated through the former leach field and into the underlying overburden and shallow bedrock aquifers.

The objective of this SSI was to attempt to fill remaining data gaps, including the following:

- The PFAS-contaminated overburden groundwater has not been fully delineated;
- Evaluating potential impact to sensitive receptors;
- It has not been determined if PFAS-contaminated overburden groundwater is migrating offsite; and,
- The PFAS-contaminated bedrock aquifer has not been fully delineated.

The practicality of addressing these data gaps was limited by the documented minimal presence of overburden groundwater at and surrounding GES, which limits the ability to characterize PFAS concentrations and migration of overburden groundwater. However, an attempt to delineate the overburden groundwater, particularly at compliance points on- and offsite, is necessary for future decision-making processes, including the potential for groundwater reclassification at the property. The VTDEC elected not to perform additional bedrock drilling at this time, so as not to create additional potential preferential pathways for vertical PFAS migration.

In order to address the data gaps outlined above, Atlas attempted to install eight new offsite groundwater monitoring wells, and sample them along with the four existing onsite monitoring wells previously installed by Verterre. Atlas was able to install six of the eight proposed wells, as two of the locations had no evidence of overburden groundwater. All soil borings were advanced until refusal on assumed bedrock or until evidence of at least five feet of saturated overburden. Onsite monitoring wells MW-1 through MW-4, and new offsite wells MW-103 through MW-108, were gauged on July 11, 2022 for depth to water. Of the ten available wells, six were dry and only three (MW-103, -107 and -108) had sufficient water for sample collection. Atlas also collected

samples of ten nearby water supply wells on July 8, 2022, nine of which had previously been sampled by Verterre. All groundwater and supply well samples were analyzed for PFAS by ConTest Pace Analytical of East Longmeadow, MA; groundwater was analyzed via EPA Method 537 modified with isotope dilution, and drinking water was analyzed via EPA Method 537.1. Atlas inadvertently missed the sample collection of a surface water sample from the pond located to the south of GES; the VTDEC has requested that a sample be collected next year in conjunction with other sampling in the area.

PFAS compounds were detected in four of the ten water supply wells sampled on July 8, 2022, at concentrations below the Vermont Health Advisory (VHA) of 20 nanograms per liter (ng/L, or parts per trillion) for the sum of five regulated compounds. The only detected compounds in these four samples were perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). The total regulated PFAS concentrations ranged from 2.4 ng/L at Res-9 (72 Kidder Hill Road), to 6.2 ng/L at Res-4 (47 School Street). There were no detections of non-regulated PFAS compounds in any of the supply wells sampled. No other PFAS compounds were detected in any of the other samples. No samples had reported detections exceeding the VHA.

Groundwater in the overburden aquifer appears to flow in an east-southeasterly direction, which is consistent with previous reports by Verterre (2019). On July 11, 2022, groundwater elevations ranged from 172.76 feet (MW-106) to 189.41 feet (MW-108). Monitoring wells MW-1, -2, -3, -4, -104, and -105 were dry. MW-106 purged dry and did not have sufficient recharge for sample collection. Total regulated PFAS was reported in off-site MW-107 (located cross-gradient of GES leach field) groundwater sample at 60 ng/L, which exceeds the Vermont Groundwater Enforcement Standard (VGES) of 20 ng/L. All five of the regulated PFAS compounds were detected in the sample, as well as several non-regulated compounds, for a total PFAS concentration of 201 ng/L. Total regulated PFAS in MW-103 (located cross-gradient of GES leach field) was reported at 8.9 ng/L (PFOS and PFOA, only) and total PFAS, including non-regulated compounds, was reported at 16.1 ng/L. Total regulated PFAS concentrations in MW-108 (located up-gradient of GES) were 13.8 ng/L (PFHpA, PFOA, and PFOS) and total PFAS was reported at 23.7 ng/L.

Based on previous geophysical results of the GES supply well and sampling of onsite overburden groundwater monitoring wells, the onsite leach field is the most likely source of PFAS in the onsite bedrock supply well at GES. However, surrounding residences and businesses also utilize private septic systems; therefore, additional potential PFAS sources may exist in the area that may be contributing PFAS to the environment. At this time there are no known point sources of PFAS in the surrounding area; however, it is Atlas' understanding that a comprehensive source evaluation has not been completed. Additionally, PFAS was detected in overburden groundwater at cross-and upgradient locations to the GES leach field, suggesting that this previously identified source is likely not the only one contributing PFAS to groundwater in the area.

The PFAS compounds in the sampled overburden groundwater (up to nine regulated and non-regulated compounds) do not directly correlate to the PFAS compounds reported in bedrock supply wells (PFOA and PFOS, only); however, PFOA and PFOS are considered end-product PFAS compounds, and other PFAS can be precursors that eventually transform into those two compounds. It is possible that by the time the groundwater makes its way into bedrock, the precursor compounds have transformed into PFOA and PFOS. Alternatively, there are likely different sources of PFAS entering the overburden and bedrock aguifers.

Based on the above results and conclusions, Atlas offers the following recommendations:

- 1. Attempt a confirmatory groundwater monitoring well sampling event in Spring 2023 (following snow melt and higher rainfall) and include a surface water sample for analysis of PFAS and assessing PFAS concentration trends.
- 2. Perform a confirmatory sampling round of the four bedrock supply wells (Res-3, -4, -9 and -12) that had detections of regulated PFAS. Water quality results should be submitted to the property owners.
- 3. Properly dispose of the purge water drum.
- 4. Quarterly sampling of bedrock water supply well at Res-2 (70 School Street) should continue for analysis of PFAS, as should the quarterly sampling and operation and maintenance of the POET system at GES.
- 5. It is unlikely that installation of additional overburden monitoring wells would yield any more groundwater data than the existing well network, due to the minimal presence of overburden groundwater. The best course of action may be to reclassify groundwater at GES and implement Atlas' recommendations presented in the Evaluation of Corrective Action Alternatives (ECAA, June 2020).

1. INTRODUCTION

Atlas Technical Consultants, LLC (Atlas) prepared this report for the Vermont Department of Environmental Conservation (VTDEC) to document the Supplemental Site Investigation (SSI) performed to further define the nature and extent of per- and polyfluoroalkyl substances (PFAS) in overburden groundwater at the Grafton Elementary School (GES; herein referred to as "the Site",). The property is listed as a hazardous site SMS #2018-4794 and is located at 58 School Street, Grafton, Vermont (**Figures 1** and **2**). This SSI was performed in accordance with Atlas' Standard Operating Procedures (SOPs), Vermont's *Investigation and Remediation of Contaminated Properties Rule* (I-Rule, July 2019), and Atlas' SSI Work Plan dated April 28, 2022, which was approved by Kimberly Caldwell of the VTDEC. The VTDEC requested additional site investigation activities to address remaining data gaps at the Site in order to assist in future decision-making processes.

The GES water supply has been found to contain per- and poly-fluoroalkyl substances (PFAS) and the water is presently treated using granular activated carbon (GAC). PFAS are long-chain fluorinated compounds that have been determined to be biopersistent, bioaccumulative, hazardous to human and animal health, and likely carcinogenic, and are an emerging contaminant with their widespread usage and global presence now being realized. Vermont currently has five regulated PFAS compounds for soil and groundwater media, and Vermont Health Advisory (VHA) values for drinking water, which include perfluorohexane sulfonic acid (PFHxS), perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). The Vermont Groundwater Enforcement Standards (VGES) and Vermont Health Advisory (VHA) for drinking water are both currently set at 20 parts per trillion (ppt) for these five PFAS compounds, individually or summed.

Site investigations conducted by The Verterre Group (Verterre, October 12, 2018 and September 26, 2019), and a geophysical investigation by ATC Group Services (ATC, now dba Atlas; September 30, 2019), determined that PFAS is entering the Site's water supply well via a series of fractures in the bedrock, and indicated that the source of PFAS is likely the nearby shallow GES leach field that sits atop shallow bedrock (encountered at approximately 20 feet below ground surface) and possibly some PFAS contributions from nearby residential leach fields. The PFAS is suspected to have been present in floor wax and cleaning supplies used at the school and disposed of in wash water to the active onsite septic system. It is suspected that the PFAS migrated through the former leach field and into the underlying overburden and shallow bedrock aquifers.

This SSI was performed in an attempt to continue Site investigations to meet the objective of defining the nature and extent of contamination in the overburden aquifer and evaluating potential impact to sensitive receptors. In particular, Atlas attempted to delineate PFAS contamination in groundwater at compliance points on- and offsite. Newly installed groundwater monitoring wells, as well as previously installed monitoring wells onsite, were sampled for presence of PFAS to assist the VTDEC in future decision-making processes. Several previously sampled offsite bedrock water supply wells were also resampled for presence of PFAS to further define the extent of PFAS contamination in the bedrock aquifer around the Site. No additional bedrock drilling was performed at this time, so as not to create additional potential preferential pathways for vertical PFAS migration.

The objective of this SSI was to attempt to fill remaining data gaps, including the following:

- The PFAS-contaminated overburden groundwater has not been fully delineated;
- Evaluating potential impact to sensitive receptors;
- It has not been determined if PFAS-contaminated overburden groundwater is migrating offsite; and.
- The PFAS-contaminated bedrock aguifer has not been fully delineated.

The practicality of addressing these data gaps was limited by the documented minimal presence of overburden groundwater at GES, which limits the ability to characterize contaminant concentrations and migration of overburden groundwater. However, an attempt to delineate the overburden groundwater, particularly at compliance points on- and offsite, is necessary for future decision-making processes, including the potential for groundwater reclassification at the property.

In order to address the data gaps outlined above, Atlas attempted to install eight new offsite groundwater monitoring wells, and sample them along with the four existing onsite monitoring wells previously installed by Verterre. Atlas was able to install six of the eight proposed wells, as two of the locations had no evidence of overburden groundwater. Onsite monitoring wells MW-1 through MW-4, and new offsite wells MW-103 through MW-108, were gauged on July 11, 2022 for depth to water. Of the ten available wells, six were dry and only three (MW-103, -107 and -108) had sufficient water for sample collection. Atlas also collected samples of ten nearby water supply wells on July 8, 2022, nine of which had previously been sampled by Verterre. All groundwater and supply well samples were analyzed for PFAS by Con-Test Pace Analytical of East Longmeadow, MA; groundwater was analyzed via EPA Method 537 modified with isotope dilution, and drinking water was analyzed via EPA Method 537.1. Atlas inadvertently missed the sample collection of a surface water sample from the pond located to the south of GES; the VTDEC has requested that a sample be collected next year in conjunction with other sampling in the area.

1.1 SITE INFORMATION

The coordinates of the property are $43.17026^\circ N / 72.60904^\circ W$ (**Figure 1**). The current use of the property is a pre-K through sixth grade school. The school building has been in use as a school since 1870; however, the construction year is unknown. The surrounding properties consist of residences to the north, east and west, and the pond and farm fields to the south.

Role	Name	Mailing Address	Email	Phone #
Property Owner	Windham Northeast Supervisory Union	25 Cherry Street Bellows Falls, VT	elizabeth.harty@wnesu.com GES Principal	(802) 463-9958

2. CONCEPTUAL SITE MODEL

The following conceptual site model (CSM) is formulated in accordance with §35-303 of Vermont's I-Rule, which outlines potential source(s) of release(s), infrastructure considerations, historical land use, geology, hydrogeology, contaminant fate and transport, sensitive receptors and potential exposure pathways. This CSM was generated based on previous available Site data as well as results discussed later in this report.

2.1 SITE PHYSICAL SETTING AND INFRASTRUCTURE

The Site and surrounding areas are relatively flat and are located in a valley bottom. The ANR Natural Resources Map lists the Site and surrounding properties as Colton loamy fine sands with 2-8% slopes, with an elevation of approximately 925 feet above mean sea level (AMSL). The nearest surface water features are a pond located approximately 180 feet south of the onsite water supply well, the Saxtons River located approximately 700 feet northeast of the school, and the South Branch of the Saxtons River located approximately 700 feet to the southeast. The Site contains the school building only, with residences to the north, east and west, and the pond and farm fields to the south.

The existing water supply well, installed in 1987, is located approximately 30 feet west of the school building and has a reported total depth of 655 feet (though the bottom ~20 feet appeared to be either collapsed or silted in). The well was completed with 6-inch steel casing to 43 feet below ground surface, with an estimated yield of 12 gallons per minute. A point-of-entry-treatment (POET) system was installed in August 2018 to address the PFAS contamination in the water supply. The system consists of two granular activated carbon (GAC) filter tanks that are serviced by Culligan Water Systems.

Except for GES itself (SMS#2018-4794), there are no VTDEC designated hazardous waste sites listed in the immediate vicinity of the subject property, but one site is shown approximately 1,000 feet northeast of the school, and north of the Saxtons River (**Figure 1**). The hazardous site is likely too far away to be a threat to the subject property; however, an investigation would be needed to make a conclusive determination. Several nearby private drinking water supply wells are listed in the ANR Natural Resources Atlas and depicted on **Figure 1**. Four of the surrounding water supplies have been sampled for PFAS.

2.2 Source(s) & Site History

The prior use of the Site is unknown at this time but based on its rural/small village setting was likely farm or forestland prior to the construction of the buildings. Previous generations of buildings could also have occupied this location. Further investigation would be needed to confirm historical land use.

The GES water supply (WSID #6076) has been found to contain PFAS, with the onsite septic system and leach field identified as a likely contributing source. Site investigations conducted by The Verterre Group (Verterre, dated October 12, 2018 and September 26, 2019), and a geophysical investigation by ATC Group Services (ATC, now dba Atlas; September 30, 2019), determined that PFAS is entering the water supply well via a series of fractures in the bedrock, and indicated that the source is likely the nearby leach field that sits atop shallow bedrock (encountered at approximately 20 feet below ground surface) and possibly some PFAS contributions from nearby residential leach fields. The PFAS is suspected to have been or still be

present in floor wax and cleaning supplies used at the school and disposed of in wash water to the active onsite septic system. The PFAS then migrated (or continues to migrate) through the leach field and into the underlying overburden and bedrock aquifers.

Verterre has conducted quarterly monitoring of the POET system installed on the school's water supply in 2018. Concentrations of the sum of regulated PFAS have ranged from 17.4 ppt (December 2021) to 44.1 ppt (May 2020) in the pre-treatment samples collected from the water supply. The December 2021 sample was the only one collected since 2018 with results below VGES/VHA. It is difficult to determine if concentrations are exhibiting a decreasing trend at this time.

According to VTDEC-provided information, ten nearby residential bedrock supply wells, sumpwater from three residences, three overburden monitoring wells (MW-1, -2, and -3; MW-4 was dry), five boring soil samples, one wastewater pump station and the school's drinking water supply were all sampled for PFAS as part of a previous Site investigation by Verterre. One of the four nearby residential supply wells had PFAS in excess of regulated standards (northeast of leach field), two wells had PFAS detected above the reporting limit (RL) (northwest north of the leach field) and one supply well did not detect PFAS above laboratory method detection limits (MDLs) (west of leach field). Three soil samples contained low concentrations of PFAS, and two did not have detections above MDLs. All groundwater samples collected from the onsite overburden monitoring wells contained elevated PFAS concentrations, and the wastewater pump station and school drinking water samples had PFAS detections in exceedance of standards. In 2019, total regulated PFAS concentrations were reported at 304 ng/L in MW-1 (near GES leach field), 172 ng/L in MW-2 (near GES leach field), and 42 ng/L in MW-3 (likely upgradient of GES leach field).

Verterre has continued monitoring of the water supply at 70 School Street for presence of PFAS. Samples have been collected approximately quarterly since 2018 and have ranged in regulated PFAS concentration from 2.4 ppt (October 2019) to 22.8 (September 2021). A trend is not discernable at this time, though it appears concentrations may be influenced by seasonal variations.

Per the request of the VTDEC, ATC (now dba Atlas) completed an Evaluation of Corrective Actions and Alternatives (ECAA) for the Site in June 2020 to evaluate options for management of the drinking water source at GES. In the ECAA, ATC recommended continued operation of the POET system long-term rather than development of a new water source. The primary driver of corrective action is to mitigate exposure to sensitive receptors (ingestion of water by school children and staff, in this case) and this option is the most predictable and most protective of human health. The use of GAC treatment has been widely accepted as an effective treatment option for known PFAS compounds in drinking water at this time. The continued use of the GAC POET system would be the most effective short-term solution, as a temporary system is already in place and the detected PFAS concentrations can be cost effectively filtered using GAC. Little effort would be needed to redesign and permit the system for permanent use. Though potentially less than half the cost of continued treatment, developing a new PFAS free water source has a high degree of uncertainty at this Site. Based on the apparent widespread nature of PFAS in nearby water supplies, it is unlikely that a suitable location could be found on an adjacent property or on the GES property that would be PFAS-free, and it is possible that a new well could become impacted in the future from potential migration of the PFAS contaminants.

It is Atlas's understanding that the VTDEC will not be making a decision on the future of the water supply at GES until a comprehensive engineering study for installation of municipal water and wastewater in the Town of Grafton, currently underway and funded by the State of Vermont, is complete. A likely scenario is that groundwater will be reclassified in a certain radius around the Site, with deed restrictions for the installation of future water supply wells in that area.

2.3 SITE GEOLOGY & HYDROGEOLOGY

The dominant bedrock geology in the immediate vicinity is listed on the online ANR Natural Resources Atlas as granofels consisting of light-gray- to whitish-gray-weathering, massive to thickly bedded medium-grained biotite-white albite-quartz granofels, locally is a medium-gray, finer grained, more biotite-rich albitic quartz schist of gneissic aspect. The secondary bedrock feature is listed as schist. The location is also at the confluence of a granite formation consisting of light-pinkish-gray to gray, very coarse grained to medium-grained and mylonitic biotite-plagioclase-quartz-microcline augen gneiss, locally has large ovoidal relict microcline with rapakivi rims and intrusive breccia. The primary surficial geology is listed on the online ANR Natural Resources Atlas as a glacial till mantling the bedrock and reflecting the topography of the underlying bedrock surface, thicker in the valleys and thinner in the uplands. On many exposed uplands, postglacial erosion has left only rubble and scattered boulders on bedrock. Bedrock was encountered at 26 feet below ground surface (fbgs) during the construction of the onsite water supply well; other nearby well reports suggest depth to bedrock varies from 10 to 70 fbgs in the surrounding area. Overburden soils were described as primarily sands and silts.

The water table was encountered at depths ranging from 5 to 9 fbgs during Verterre's 2019 Site Investigation, and groundwater flow appears to be northeast toward the Saxtons River. Refusal was encountered during Verterre's 2019 soil boring program at depths of 2.5 to 10 fbgs; it is uncertain whether this refusal was on rock, bedrock, or dense gravel/till. There appears to be very little saturated overburden above the shallow bedrock at the Site.

2.4 CONTAMINANT FATE & TRANSPORT

PFAS are fluorinated compounds that are biopersistent, bioaccumulative, hazardous to human and animal health, and likely carcinogenic, and are an emerging contaminant with their widespread usage and global presence now being realized. PFAS are complex chemicals estimated to total over 4,000 compounds and the fate and transport characteristics or how they behave once they are released into the environment is not well known. Some PFAS compounds (i.e., precursors) can undergo partial degradation and/or transformation into other PFAS compounds; therefore, amounts and types of PFAS can increase over time in the environment. PFAS compounds such as PFOS and PFOA are resistant to degradation or transformation (ITRC, September 2020).

Depending on the amount of PFAS-containing material that has infiltrated the subsurface environment and soil types (e.g., sand versus clay) and other factors, some PFAS may make its way to the water table and be transported offsite. PFAS was previously detected in groundwater at the Site at concentrations exceeding the Vermont Groundwater Enforcement Standard (VGES), suggesting that PFAS washed vertically through the soil and entered the shallow overburden groundwater table, which has been observed as mostly perched zones and very little stable saturated thickness above bedrock. The horizontal extent of PFAS in groundwater is not known at this time. Attempts were made during this SSI to delineate PFAS in offsite groundwater; however, most newly installed monitoring wells had insufficient recharge for sample collection.

Low levels of PFAS have been detected in the nearby bedrock water supply wells, at concentrations below VGES, suggesting that at least some PFAS-contaminated water has entered the bedrock aquifer.

Shallow bedrock is present in the leach field and throughout most of the GES property and may be a conduit for contaminated groundwater entering the bedrock aquifer. Based on the results of ATC's 2019 down-well geophysical investigation and PFAS, nitrate, and chloride sampling analyses as well as previous investigations by The Verterre Group, it appears that water entering the septic system leach field migrated downward through the unsaturated zone and into shallow groundwater. It is possible that PFAS entered the bedrock aquifer at fracture zones extending to the bedrock/soil interface and entered the GES drinking water supply well, and possibly entered surrounding private bedrock water supplies. PFAS-contaminated shallow groundwater likely followed the easterly or southerly flow direction toward the Saxtons River, and once the contaminant entered the bedrock aquifer, PFAS transport likely followed the predominant north-south fracture orientation present in the area. Several nearby bedrock supply wells have had PFAS detections. Furthermore, at this time there are no known or suspected sources of PFAS in the surrounding area; however, it is Atlas's understanding that a comprehensive source evaluation has not been completed. Surrounding area residents and businesses also utilize onsite septic systems; therefore, additional potential PFAS sources may exist in the area.

The most productive transmissive fracture contributing groundwater to the supply well was identified at a depth of approximately 144 feet. There were other, less productive fractures identified at 60 feet, 90 feet, 120 feet, and 482 feet. PFAS sampling results from each of these zones, except the most shallow zone, exceeded the VGES and the VHA of 20 ppt. The geophysical investigation of the school's well also determined that water was entering the borehole from the 144-foot deep fracture then moving down the well and exiting out of the borehole through the lower fractures. It is possible that the well may be acting at times (e.g., ambient non pumping) as a preferential pathway for PFAS contamination to spread deeper into the bedrock aquifer.

2.5 SENSITIVE RECEPTORS AND EXPOSURE PATHWAYS

Nearby sensitive receptors include residential and municipal properties to the north, east, and west, which are a mix of cross, up- and downgradient elevations. The nearby surface water pond to the south is potentially threatened by PFAS through overland or shallow groundwater influences; a sample will be collected from this pond in 2023 and analyzed for presence of PFAS. The primary exposure pathway is from ingestion of contaminated groundwater, likely though drinking water supply sources. All of the properties in the area obtain drinking water from bedrock or dug supply wells and sewage disposal is through onsite private septic systems. At this time with available data, mobilized contaminants have been identified in surrounding drinking water supplies, shallow overburden soils and groundwater.

3. SUPPLEMENTAL SITE INVESTIGATION PROCEDURES

3.1 WATER SUPPLY WELL SAMPLING

On July 8, 2022, Atlas collected drinking water samples from ten water supply wells, including Res-1, -3 through -10, and Res-12 (**Figure 2**). Verterre had previously sampled Res-1 through -10 in 2019; several were reported as non-detect, though some had detections above reporting limits for the list of regulated PFAS. Verterre routinely sampled Res-2 (70 School Street) throughout 2022, therefore Atlas did not duplicate those efforts. Three other residences had detections of PFAS above reporting limits in 2019, including 66 Pleasant Street (Res-3), 47 School Street (Res-4), and 94 Pleasant Street (Res-6); Atlas collected confirmatory samples from these three locations. Atlas also resampled the nearest upgradient water supply well, located at 151 Townshend Road (Res-1) and 108 Pleasant Street (new sample ID Res-12), which are both located in the apparent downgradient direction from the source area. Atlas confirmed that there is no water supply for Res-11 (72 School Street).

Atlas included a field blank at each location for standard quality assurance/quality control (QA/QC) purposes. Samples were collected at each location, pre-treatment (if any), after flushing the system for at least 10 minutes. Samples were stored and transported on ice and in accordance with standard chain-of-custody procedures. Samples were submitted to Con-Test Pace Analytical Laboratory of East Longmeadow, MA, for laboratory analysis of PFAS by EPA Method 537.1 (specific to drinking water), which is a Vermont certified laboratory for PFAS in drinking water and is National Environmental Laboratory Accreditation Program (NELAP) accredited. Sampling was conducted in accordance with Atlas's SOPs. Field notes and water supply field collection forms are included in **Appendix A**. Photographs of supply well locations are in **Appendix B**.

3.2 SITE PREPARATION

Prior to the initiation of the SSI activities, Atlas updated the Site-specific Health and Safety Plan (HASP) in accordance with the Occupational Safety and Health Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR 1910.120). The HASP detailed the potential exposures and risks associated with each onsite activity and the actions necessary to minimize potential exposure.

On June 14, 2022, Atlas personnel marked out the eight proposed boring locations (MW-101 through -108; **Figure 2**), contacted DigSafe, and met with a private utility locator. All subsurface utilities near boring locations were located and marked out to ensure they were not damaged during subsequent drilling.

3.3 ADDITIONAL SUBSURFACE INVESTIGATION

On June 23, 2022, Atlas provided oversight of the advancement of eight soil borings via direct push technology and continuous sampling methods (**Figure 2**). Continuous soil samples were logged using the modified Burmister system, however, they were not screened with a photoionization detector (PID) as PFAS is the contaminant of concern. See **Appendix A** for field notes and boring logs, and **Appendix C** for photographs. Six of the locations (MW-103, -104, -105, -106, -107, and -108) were completed as groundwater monitoring wells. Monitoring wells were constructed of 1.5-inch diameter PVC casing with 0.010" slotted five-foot screens, surrounded by a sand filter pack and sealed with bentonite. All monitoring wells were completed flush to the ground surface with a protective road box and cover. Two borings, MW-101 and -102, were not installed as monitoring wells due to assumed bedrock refusal at 4 fbgs and 8

fbgs, respectively, and no evidence of an overburden groundwater table. Evidence of groundwater at the other boring locations was recorded at depths between 3.5 and 9.5 fbgs. MW-103, -104, -105, -106, -107, and -108 were installed to depths of approximately 10 to 13.5 fbgs.

Soils were observed as brown, silty sand and silty gravel and cobbles, with color mottling near the observed water table. Refusal on bedrock was met in MW-101 at 4 fbgs, and at MW-102 at 8 fbgs. All wells were developed at the end of the drilling event; three wells had low recharge and were subsequently purged on the following day. All drill cuttings were returned to the boreholes. No soil samples were collected for PFAS analysis per the approved Work Plan.

All available monitoring wells were surveyed relative to existing Site features by Lakeside Environmental Group on July 8, 2022, for preparation of an updated Site Plan (**Figure 2**) and groundwater elevation contours.

3.4 GROUNDWATER INVESTIGATION

On July 11, 2022, Atlas returned to the Site to attempt to gauge the existing and newly installed monitoring wells. Wells MW-1, -2, -3, -4, -104, and -105 were dry. Atlas purged MW-103, -106, -107, and -108 via low-flow procedures in accordance with Atlas's SOP 8.30 for Groundwater Sample Collection Procedures Using Low Flow Sampling Methodology, based on the United States Environmental Protection Agency (EPA) Region 1 Low Stress (low flow) Purging and Sampling Procedure (SOP #: GW 0001, Rev. 4). Sampling in this manner allows for the collection of groundwater parameters such as specific conductivity, dissolved oxygen, oxygen-reduction potential, and pH during the purge process, and also reduces turbidity. Monitoring well MW-106 was purged dry after 10 minutes and did not recharge with enough volume for sample collection.

Purge water was containerized in a 55-gallon drum stored onsite for future offsite disposal. One equipment rinsate blank, one field blank, and one duplicate sample were collected for QA/QC purposes. The groundwater samples from MW-103, -107 and -108 and the QA/QC samples were analyzed for PFAS compounds via EPA Method 537, modified by isotope dilution (537Mod), by Con-Test Pace Analytical Laboratory of East Longmeadow, MA.

3.5 STANDARD OPERATING PROCEDURES (SOPS)

Atlas performed the work in accordance with SOPs outlined below, which have been previously submitted to VTDEC. Copies of SOPs can be provided upon request.

Atlas SOP	Field Procedure
SOP 1.0	Drilling Equipment Standards
SOP 2.0	Monitoring Well Construction Procedures
SOP 3.0	Well Development Procedures
SOP 4.0	General Sampling Procedures for Aqueous & Solid Matrices
SOP 8.3	Groundwater Sampling Using Low-Flow
SOP 9.0	Water Level Measurement Procedure
SOP 10.0	Decontamination Procedure
SOP 11.0	Sample Custody Procedure
SOP 19.0	Field Log Book
SOP 21.0	Sampling for PFAS

4. RESULTS

4.1 WATER SUPPLY SAMPLING RESULTS

PFAS compounds were detected in four (Res-3, -4, -9, and -12) of the ten water supply wells sampled on July 8, 2022, at concentrations below the VHA of 20 ng/L for the sum of five regulated compounds (**Table 1** and **Figure 3**). The only detected compounds in these four samples were PFOS and PFOA. The total regulated PFAS concentrations ranged from 2.4 ng/L at Res-9 (72 Kidder Hill Road), to 6.2 ng/L at Res-4 (47 School Street). Res-4 is located upgradient of GES; Res-3, -9 and -12 are located cross- and/or down-gradient of GES. There were no detections of non-regulated PFAS compounds in any of the supply wells sampled. No other PFAS compounds were detected in any of the other samples. No PFAS were detected in the associated field blanks. The laboratory analytical report is included in **Appendix C**.

4.2 GROUNDWATER SAMPLING RESULTS

The groundwater levels measured on July 11, 2022 in available monitoring wells are presented in **Table 2**, and are shown on **Figure 4**. Static water table elevations were calculated for each monitoring well by subtracting the measured depth-to-water from the surveyed top-of-casing elevations, which are relative to an arbitrary site datum of 200.00 feet. The groundwater in the unconfined surficial aquifer appears to flow in an east-southeasterly direction, which is consistent with previous reports by Verterre (2019). Groundwater elevations ranged from 172.76 feet (MW-106) to 189.41 feet (MW-108). Monitoring wells MW-1, -2, -3, -4, -104, and -105 were dry. A groundwater elevation contour map is presented in **Figure 4**.

Total regulated PFAS was reported in MW-107 (located cross-gradient of the GES leach field; **Figure 5**) at 60 ng/L, which exceeds the VGES of 20 ng/L (**Table 3**). All five of the regulated PFAS compounds were detected in the sample, as well as several non-regulated compounds, for a total PFAS concentration of 201 ng/L. Total regulated PFAS in MW-103 (located cross-gradient of the GES leach field) was reported at 8.9 ng/L (PFOS and PFOA, only) and total PFAS, including non-regulated compounds, was reported at 16.1 ng/L. Total regulated PFAS concentrations in MW-108 (located upgradient of GES) were 13.8 ng/L (PFHpA, PFOA, and PFOS) and total PFAS was reported at 23.7 ng/L. No PFAS were detected in the associated field blank or equipment blank. The associated duplicate sample from MW-103 was within 30% relative percent difference (RPD) of the sample, ranging from 0 – 11%. Groundwater PFAS results are presented on **Figure 5**; the laboratory analytical report is in **Appendix C**.

Atlas conducted a limited review of field and laboratory QA/QC data and procedures for this SSI at GES. All sample collection procedures were performed by Atlas in accordance with accepted criteria. The results of this data usability analysis indicate that the data used for the characterization of the Site are of suitable quality to support the conclusions of this SSI Report.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The objective of this SSI was to attempt to fill remaining data gaps, including the following:

- The PFAS-contaminated overburden groundwater has not been fully delineated;
- Evaluating potential impact to sensitive receptors;
- It has not been determined if PFAS-contaminated overburden groundwater is migrating offsite: and.
- The PFAS-contaminated bedrock aquifer has not been fully delineated.

The practicality of addressing these data gaps was limited by the documented minimal presence of overburden groundwater at and surrounding GES, which limits the ability to characterize PFAS concentrations and migration of overburden groundwater. However, an attempt to delineate the overburden groundwater, particularly at compliance points on- and offsite, is necessary for future decision-making processes, including the potential for groundwater reclassification at the property. The VTDEC elected not to perform additional bedrock drilling at this time, so as not to create additional potential preferential pathways for vertical PFAS migration.

In order to address the data gaps outlined above, Atlas attempted to install eight new offsite groundwater monitoring wells, and sample them along with the four existing onsite monitoring wells previously installed by Verterre. Atlas was able to install six of the eight proposed wells, as two of the locations had no evidence of overburden groundwater. All soil borings were advanced until refusal on assumed bedrock or evidence of at least five feet of saturated overburden. Onsite monitoring wells MW-1 through MW-4, and new offsite wells MW-103 through MW-108, were gauged on July 11, 2022 for depth to water. Of the ten available wells, six were dry and only three (MW-103, -107 and -108) had sufficient water for sample collection. Atlas also collected samples of ten nearby water supply wells on July 8, 2022, nine of which had previously been sampled by Verterre. All groundwater and supply well samples were analyzed for PFAS by ConTest Pace Analytical of East Longmeadow, MA; groundwater was analyzed via EPA Method 537 modified with isotope dilution, and drinking water was analyzed via EPA Method 537.1. Atlas inadvertently missed the sample collection of a surface water sample from the pond located to the south of GES; the VTDEC has requested that a sample be collected next year in conjunction with other sampling in the area.

PFAS compounds were detected in four of the ten water supply wells sampled on July 8, 2022, at concentrations below the VHA of 20 ng/L for the sum of five regulated compounds. The only detected compounds in these four samples were PFOS and PFOA. The total regulated PFAS concentrations ranged from 2.4 ng/L at Res-9 (72 Kidder Hill Road), to 6.2 ng/L at Res-4 (47 School Street). There were no detections of non-regulated PFAS compounds in any of the supply wells sampled. No other PFAS compounds were detected in any of the other samples. No samples had reported detections exceeding the VHA.

Groundwater in the overburden aquifer appears to flow in an east-southeasterly direction, which is consistent with previous reports by Verterre (2019). On July 11, 2022, groundwater elevations ranged from 172.76 feet (MW-106) to 189.41 feet (MW-108). Monitoring wells MW-1, -2, -3, -4, -104, and -105 were dry. MW-106 purged dry and did not have sufficient recharge for sample collection. Total regulated PFAS was reported in offsite MW-107 (located cross-gradient of GES leach field) groundwater sample at 60 ng/L, which exceeds the VGES of

20 ng/L. All five of the regulated PFAS compounds were detected in the sample, as well as several non-regulated compounds, for a total PFAS concentration of 201 ng/L. Total regulated PFAS in MW-103 (located cross-gradient of GES leach field) was reported at 8.9 ng/L (PFOS and PFOA, only) and total PFAS, including non-regulated compounds, was reported at 16.1 ng/L. Total regulated PFAS concentrations in MW-108 (located up-gradient of GES) were 13.8 ng/L (PFHpA, PFOA, and PFOS) and total PFAS was reported at 23.7 ng/L.

Based on previous geophysical results of the GES supply well and sampling of onsite overburden groundwater monitoring wells, the onsite leach field is the most likely source of PFAS in the onsite bedrock supply well at GES. However, surrounding residences and businesses also utilize private septic systems; therefore, additional potential PFAS sources may exist in the area that may be contributing PFAS to the environment. At this time there are no known point sources of PFAS in the surrounding area; however, it is Atlas' understanding that a comprehensive source evaluation has not been completed. Additionally, PFAS was detected in overburden groundwater at cross-and upgradient locations to the GES leach field, suggesting that this previously identified source is likely not the only one contributing PFAS to groundwater in the area.

The PFAS compounds in the sampled overburden groundwater (up to nine regulated and non-regulated compounds) do not directly correlate to the PFAS compounds reported in bedrock supply wells (PFOA and PFOS, only); however, PFOA and PFOS are considered end-product PFAS compounds, and other PFAS can be precursors that eventually transform into those two compounds. It is possible that by the time the groundwater makes its way into bedrock, the precursor compounds have transformed into PFOA and PFOS. Alternatively, there are likely different sources of PFAS entering the overburden and bedrock aquifers.

5.2 RECOMMENDATIONS

Based on the above results and conclusions, Atlas offers the following recommendations:

- Attempt a confirmatory groundwater monitoring well sampling event in Spring 2023 (following snow melt and higher rainfall) and include a surface water sample for analysis of PFAS and assessing PFAS concentration trends.
- 2. Perform a confirmatory sampling round of the four bedrock supply wells (Res-3, -4, -9 and -12) that had detections of regulated PFAS. Water quality results should be submitted to the property owners.
- 3. Properly dispose of the purge water drum.
- 4. Quarterly sampling of bedrock water supply well at Res-2 (70 School Street) should continue for analysis of PFAS, as should the quarterly sampling and operation and maintenance of the POET system at GES.
- 5. It is unlikely that installation of additional overburden monitoring wells would yield any more groundwater data than the existing well network, due to the minimal presence of overburden groundwater. The best course of action may be to reclassify groundwater at GES and implement Atlas' recommendations presented in the Evaluation of Corrective Action Alternatives (ECAA, June 2020).

SIGNATURE OF REPORT AUTHORS

This report has been prepared by the employees of Atlas Technical Consultants, LLC whose signatures appear below. Requests for information on the contents of this report should be directed to these individuals.

I certify under penalty of perjury that I am an environmental professional and that all content contained within this deliverable is to the best of my knowledge true and correct.

Prepared by:

Johanna Palmer **Project Manager**

Johanna.Palmer@oneatlas.com

Joseph J. Hayes, C.P.G, P.G.

Janper Day

Operations Manager

Joseph.Hayes@oneatlas.com

TABLES

Table 1 PFAS Concentrations - Water Supply Wells

Grafton Elementary School

Grafton, Vermont

Sample Date: July 8, 2022

									Water Supp	ly Samples (ng/L))						
PFAS	PFAS Compound	VHA (ng/L)	RES-1	RES-3	RES-4	RES-5	RES-6	RES-7	RES-8	RES-9	RES-10	RES-12	RES-	3 FB	RES-4 FB	RES-9-FB	RES-12 FB
Group	T i Ao sompound	viia (lig/L)	151 Townshend	66 Pleasant	47 School	94 Pleasant	15 School	30 Pleasant	193 Townshend	72 Kidder Hill	136 Kidder Hill	108 Pleasant	66 Ple	asant	47 School	72 Kidder Hill	108 Pleasant
	perfluorohexanoic acid (PFHxA)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ND<	1.8	ND<1.9	ND<1.8	ND<1.9
	perfluoroheptanoic acid (PFHpA)	20	ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ND<	1.8	ND<1.9	ND<1.8	ND<1.9
	perfluorooctanoic acid (PFOA)	20	ND<2.0	ND<2.1	2.2	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ND<	:1.8	ND<1.9	ND<1.8	ND<1.9
	perfluorononanoic acid (PFNA)	20	ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ND<	:1.8	ND<1.9	ND<1.8	ND<1.9
PFACA	perfluorodecanoic acid (PFDA)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ND<	1.8	ND<1.9	ND<1.8	ND<1.9
	perfluoroundecanoic acid (PFUnA)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ა ND<	1.8	ND<1.9	ND<1.8	ND<1.9
	perfluorododecanoic acid (PFDoA)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	Sample ON	1.8	ND<1.9	ND<1.8	ND<1.9
	perfluorotridecanoic acid (PFTrDA)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ND<	:1.8	ND<1.9	ND<1.8	ND<1.9
	perfluorotetradecanoic acid (PFTA)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	O ND	1.8	ND<1.9	ND<1.8	ND<1.9
	perfluorobutanesulfonic acid (PFBS)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	uality \D√	1.8	ND<1.9	ND<1.8	ND<1.9
PFASA	perfluorohexanesulfonic acid (PFHxS)	20	ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	Ø ND	:1.8	ND<1.9	ND<1.8	ND<1.9
	perfluorooctanesulfonic acid (PFOS)	20	ND<2.0	3.5	4.0	ND<2.0	ND<1.9	ND<1.9	ND<2.2	2.4	ND<1.9	2.7	ND-	:1.8	ND<1.9	ND<1.8	ND<1.9
PFOSA	perfluorooctane sulfonamidoacetic acid (MeFOSAA)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	llity Ass	:1.8	ND<1.9	ND<1.8	ND<1.9
	perfluorooctane sulfonamidoacetic acid (EtFOSAA)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	Q dual ND<	:1.8	ND<1.9	ND<1.8	ND<1.9
	hexafluoropropylene oxide dimer acid (HFPO-DA, or GenX)		ND<2.0 ^(a)	ND<2.1	ND<1.9	ND<2.0 ^(a)	ND<1.9	ND<1.9 ^(a)	ND<2.2 ^(a)	ND<1.9 ^(a)	ND<1.9	ND<1.8	ND<	1.8	ND<1.9	ND<1.8 ^(a)	ND<1.9
Next Gen	4,8-dioxa-3H-perfluorononanoic acid (ADONA)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ND<	:1.8	ND<1.9	ND<1.8	ND<1.9
PFAS Analytes	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS, or F-53B Major)	-	ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ND<	:1.8	ND<1.9	ND<1.8	ND<1.9
	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS, or F-53B Minor)		ND<2.0	ND<2.1	ND<1.9	ND<2.0	ND<1.9	ND<1.9	ND<2.2	ND<1.9	ND<1.9	ND<1.8	ND<	:1.8	ND<1.9	ND<1.8	ND<1.9
	Total PFAS with VHA Values	20	ND	3.5	6.2	ND	ND	ND	ND	2.4	ND	2.7	N		ND	ND	ND
	Total Analyzed PFAS		ND	3.5	6.2	ND	ND	ND	ND	2.4	ND	2.7	N	D	ND	ND	ND

Notes:
PFAS - poly-/perfluoroalkyl substances
PFACA - perfluoroalkylcarboxylic acids
PFASA - perfluoroalkylsulfonates

PFOSA - perhadroalistical perhadroalists and perhadroalists are perhadroalists of the pe

-- no VHA for compound
Analyzed by EPA Method 537.1 by Con-Test Pace Analytical of East Longmeadow, MA.

FB - Field Blank location sample; analyzed only if detections were reported in parent sample.

(a) = Laboratory fortified blank/laboratory control sample recovery was outside of control limits. Reported value for this compound is likely to be biased low.

Atlas 280EM00864

Table 2 Groundwater Elevations

Grafton Elementary School

Grafton, Vermont

July 11, 2022

Well I.D.	Top of Casing Elevation (ft)	Depth to Bottom (ft bTOC)	Depth to Water (ft bTOC)	Water Table Elevation (ft)
MW-1	195.32	7.21	DRY	
MW-2	194.78	7.15	DRY	
MW-3	200.48	10.60	DRY	
MW-4	196.01	10.97	DRY	
MW-103	182.70	9.61	5.60	177.10
MW-104	199.14	13.22	DRY	
MW-105	191.74	13.43	DRY	
MW-106	185.28	13.55	12.52	172.76
MW-107	190.42	9.68	4.65	185.77
MW-108	194.84	9.69	5.43	189.41

Notes:

All values reported in feet relative to arbitrary site benchmark of 200.00 feet.

ft bTOC - feet below top of casing

Site surveyed on July 8, 2022 by Lakeside Environmental Group.

Atlas 280EM00864

Table 3 PFAS Concentrations - Groundwater

Grafton Elementary SchoolGrafton, VT

Sample Date: July 11, 2022

PFAS Compound	VGES (ng/L)	MW-103	MW-107	MW-108		Field Blank	Equipment Blank	DUP (MW-103)	RPD
Perfluorobutanoic acid (PFBA)		ND<2.0	13	3.8		ND<1.9	ND<2.3	ND<1.9	
Perfluorobutanesulfonic acid (PFBS)	-	2.1	2.9	ND<1.8		ND<1.9	ND<2.3	1.9	10%
Perfluoropentanoic acid (PFPeA)	-	2.4	49	3.1		ND<1.9	ND<2.3	2.3	4%
Perfluorohexanoic acid (PFHxA)	-	2.7	76	3.0		ND<1.9	ND<2.3	2.7	0%
11CI-PF3OUdS (F53B Major)		ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
9CI-PF3ONS (F53B Minor)		ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	-	ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
8:2 Fluorotelomersulfonic acid (8:2FTS A)		ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Perfluorodecanoic acid (PFDA)		ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Perfluorododecanoic acid (PFDoA)		ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)		ND<2.0	ND<1.9	ND<1.8	s	ND<1.9	ND<2.3	ND<1.9	
Perfluoroheptanesulfonic acid (PFHpS)	-	ND<2.0	ND<1.9	ND<1.8	Samples	ND<1.9	ND<2.3	ND<1.9	
N-EtFOSAA		ND<2.0	ND<1.9	ND<1.8	San	ND<1.9	ND<2.3	ND<1.9	
N-MeFOSAA		ND<2.0	ND<1.9	ND<1.8	trol	ND<1.9	ND<2.3	ND<1.9	
Perfluorotetradecanoic acid (PFTA)		ND<2.0	ND<1.9	ND<1.8	Control	ND<1.9	ND<2.3	ND<1.9	
Perfluorotridecanoic acid (PFTrDA)		ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
4:2 Fluorotelomersulfonic acid (4:2FTS A)	-	ND<2.0	ND<1.9	ND<1.8	Qua	ND<1.9	ND<2.3	ND<1.9	
Perfluorodecanesulfonic acid (PFDS)		ND<2.0	ND<1.9	ND<1.8	Assurance/Quality	ND<1.9	ND<2.3	ND<1.9	
Perfluorooctanesulfonamide (FOSA)	-	ND<2.0	ND<1.9	ND<1.8	ura	ND<1.9	ND<2.3	ND<1.9	
Perfluorononanesulfonic acid (PFNS)	-	ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	-
Perfluoro-1-hexanesulfonamide (FHxSA)		ND<2.0	ND<1.9	ND<1.8	Quality	ND<1.9	ND<2.3	ND<1.9	
Perfluoro-1-butanesulfonamide (FBSA)		ND<2.0	ND<1.9	ND<1.8	Que	ND<1.9	ND<2.3	ND<1.9	
Perfluoro-4-oxapentanoic acid (PFMPA)		ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Perfluoro-5-oxahexanoic acid (PFMBA)	-	ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
6:2 Fluorotelomersulfonic acid (6:2FTS A)	-	ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Perfluoropetanesulfonic acid (PFPeS)	-	ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Perfluoroundecanoic acid (PFUnA)		ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	-	ND<2.0	ND<1.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	-
Perfluoroheptanoic acid (PFHpA)	20	ND<2.0	7.2	2.4		ND<1.9	ND<2.3	ND<1.9	
Perfluorooctanoic acid (PFOA)	20	2.4	25	6.7		ND<1.9	ND<2.3	2.6	8%
Perfluorooctanesulfonic acid (PFOS)	20	6.5	13	4.7		ND<1.9	ND<2.3	5.8	11%
Perfluorononanoic acid (PFNA)	20	ND<2.0	8.7	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Perfluorohexanesulfonic acid (PFHxS)	20	ND<2.0	5.9	ND<1.8		ND<1.9	ND<2.3	ND<1.9	
Total Regulated PFAS	20	8.9	60	13.8		ND	ND	8.4	
Total Analyzed PFAS		16.1	201	23.7		ND	ND	15.3	

Notes:

PFAS - poly-/perfluoroalkyl substances

Results given in nanograms per liter (ng/L), parts per trillion.

ND< - Not-Detected at or above laboratory reporting limit, specified.

VGES - Vermont Groundwater Enforcement Standard

-- No VGES for compound

Shaded areas indicate VGES exceedences, either individually or summed with other regulated PFAS for total >20 ng/L.

Analyzed by EPA Method 537 (modified) by Con-Test Pace Analytical of East Longmeadow MA.

RPD - relative percent difference, between parent and duplicate sample results; not calculated for ND.

FIGURES

Figure 1 - Site Vicinity Map
Grafton Elementary School

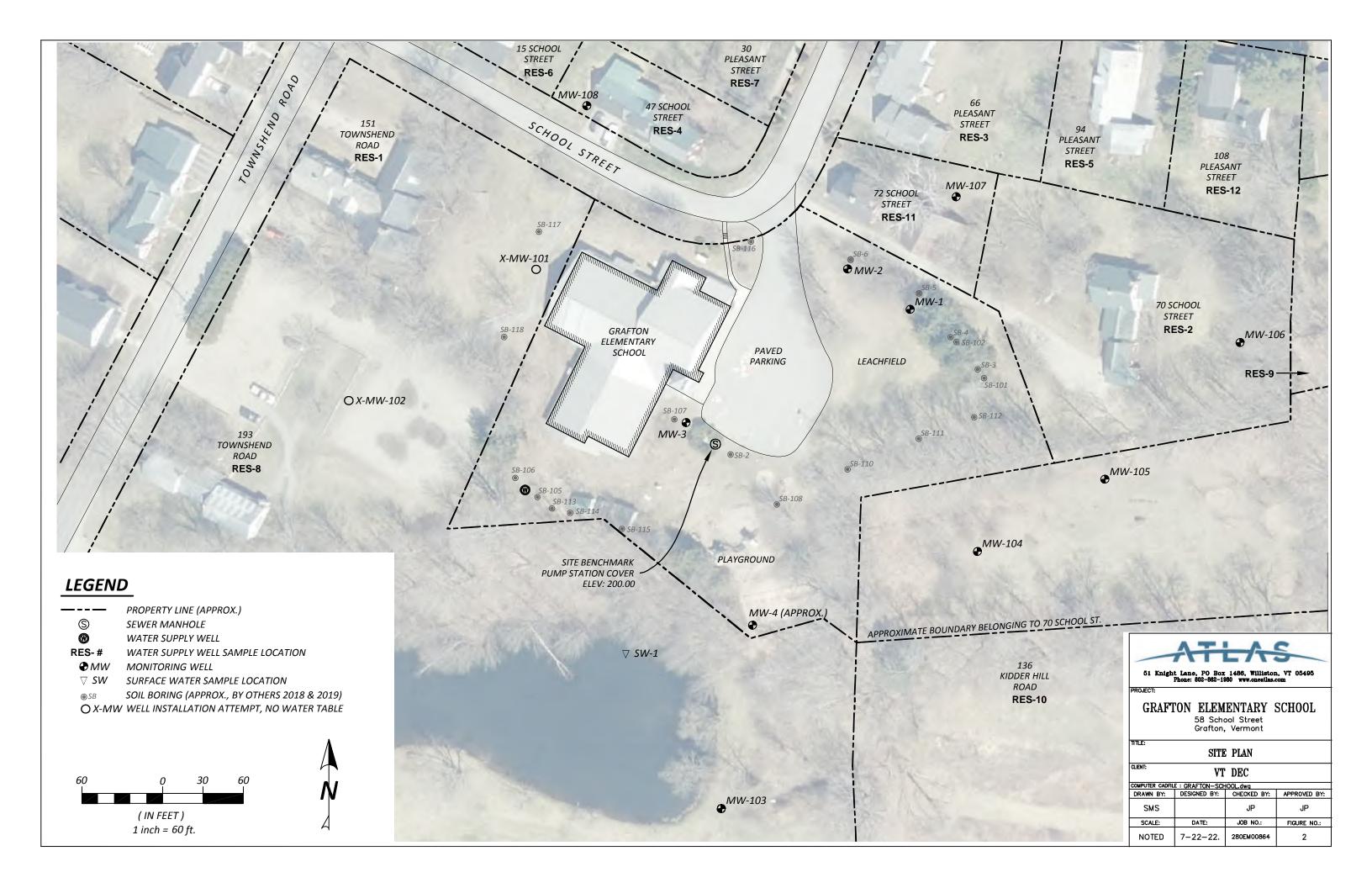
58 School Street Grafton, VT

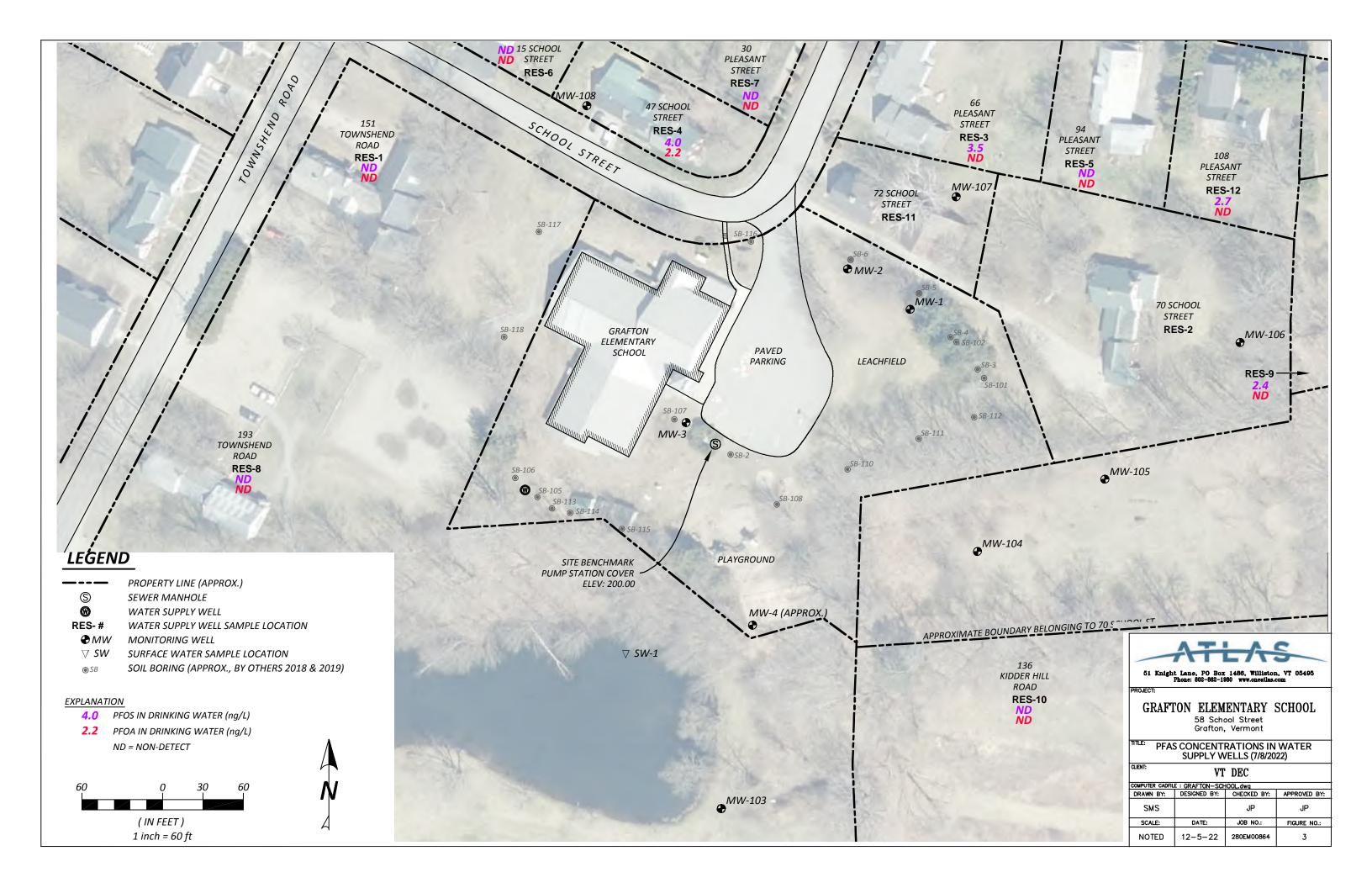
LEGEND

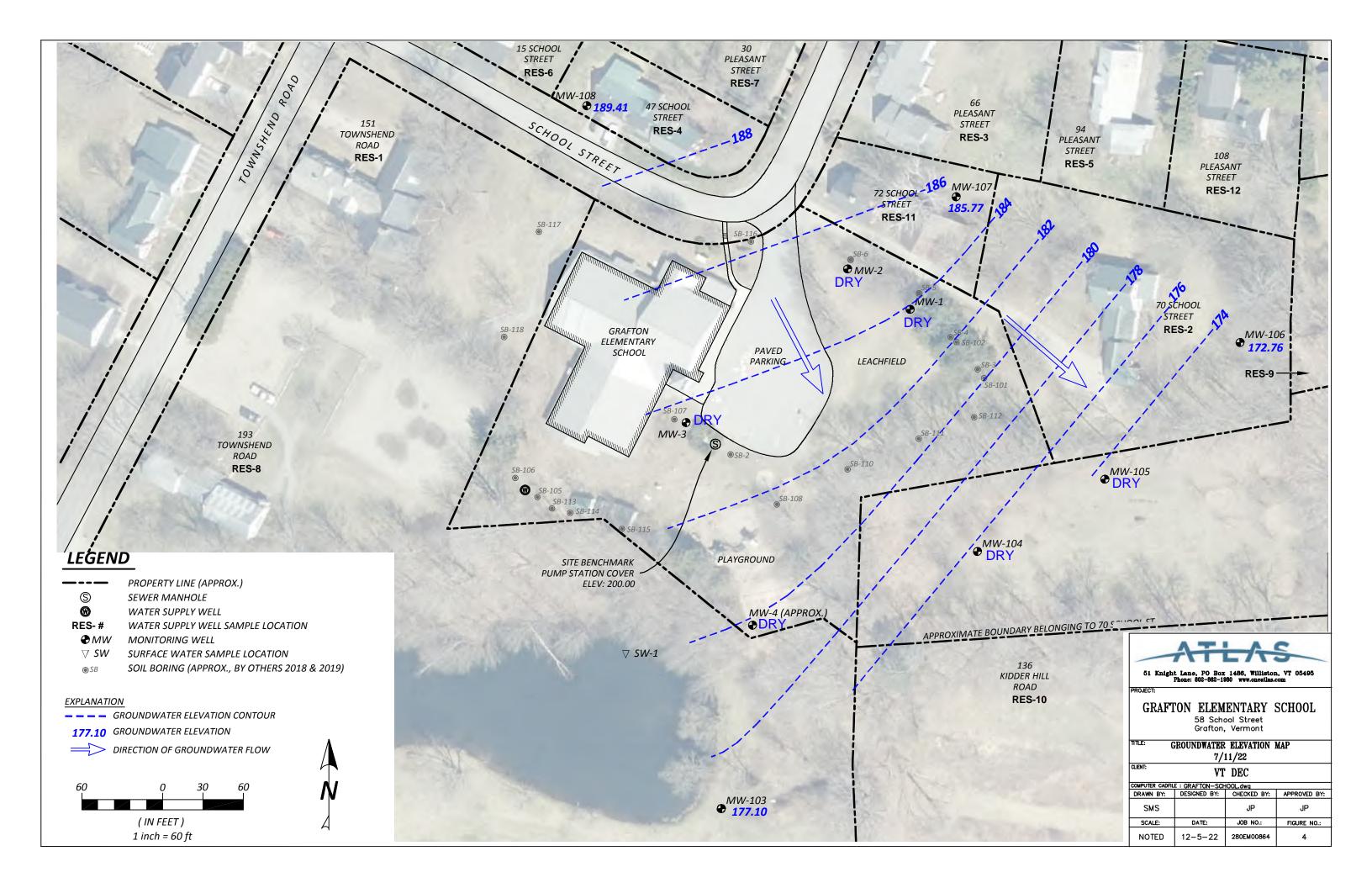
Class 2 Wetland

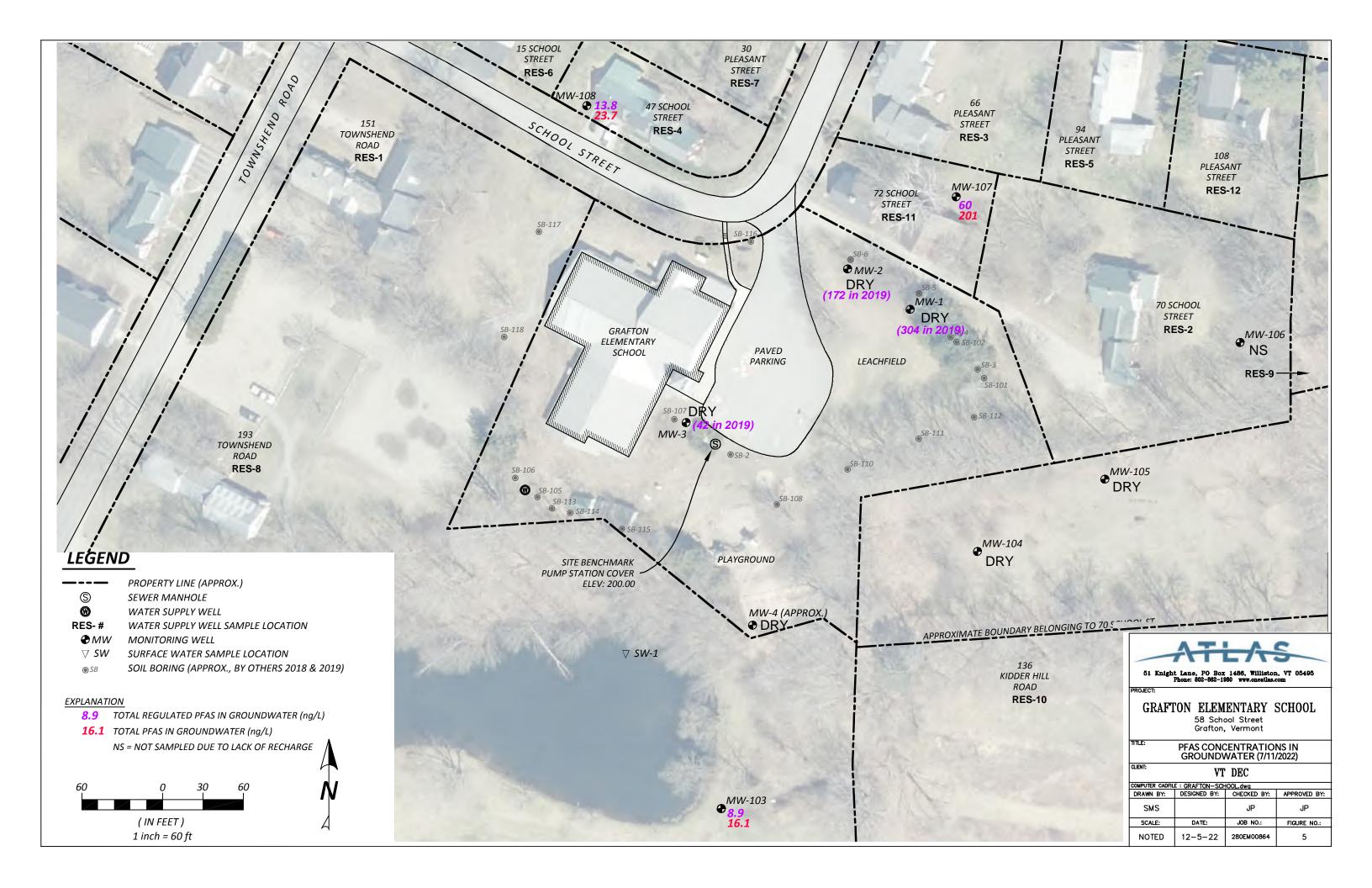
Incorrectly Located **GPS Located** Screen Digitized E911 Address Matched Welldriller/Clarion Unknown Location Method

Active Proposed Inactive


1: 3,907


1cm = 39 meters


1in = 326 ft.


NOTES

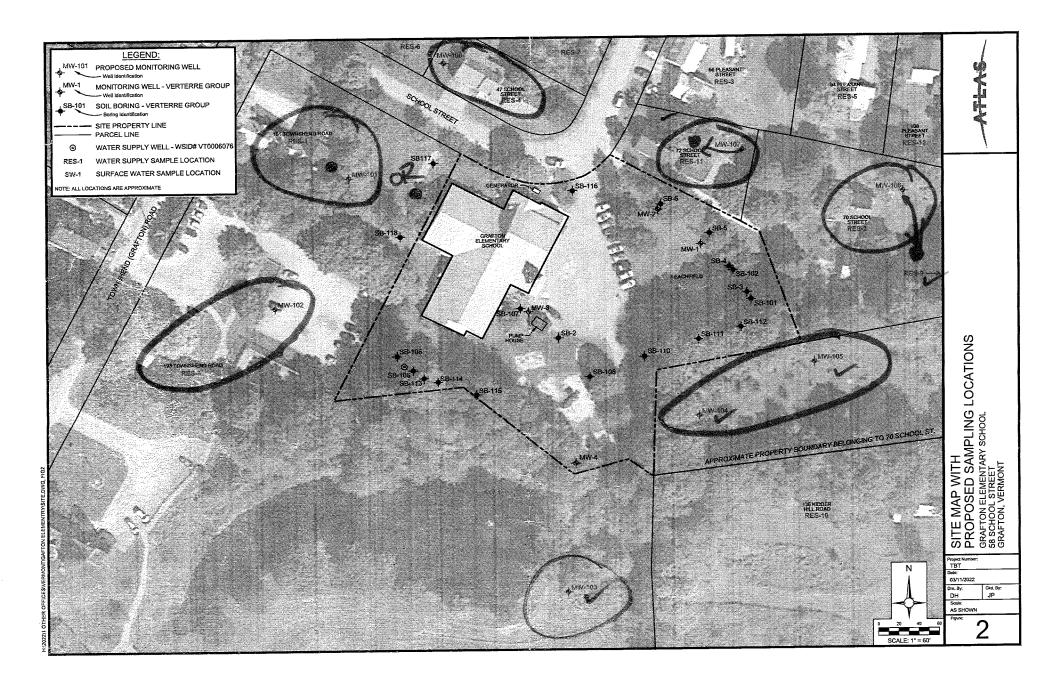
Map created using ANR's Natural Resources Atlas

APPENDIX A

FIELD NOTES & BORING LOGS

6/14/22 Grafton School 280EM00864 PUL 0920 Hr EL 0-15ixe to meet Tyler Button PUL weather - 750 sunny, light brooze A A Task: Mark out barry locations and clear all WI PUL Numbers-refer to map + site contact 11st 1) 151 Townsherd - no access agm. yot, but Korl called + she's OK to do work. Michelle (631) 398-1766, - Jo F to obtain agreement. Marked boring near deck, but not sure it drill rig can tit thru tence. To te check who were marked replacement boatron, ust outside tence closest to school, it readed. I All clear for UL (MW-101) well in front 耳 2) 70 school St. (MW:106) - behind house, moved, south to avoid leach field. (MW-104+-105) warked in field. ** Lasade to bome mats + seed / mulch just in case!! All close for UL F Ξ: We All MWS to be confleted of Hush mounts of F (3) do Pleasant - DW only, no PUL (4) 47 School St - No access; Sam, Liz Povo apparently related to Beulah + Teny Parele (#6) - Jo to try omarline terry re: both properties (MW-108)

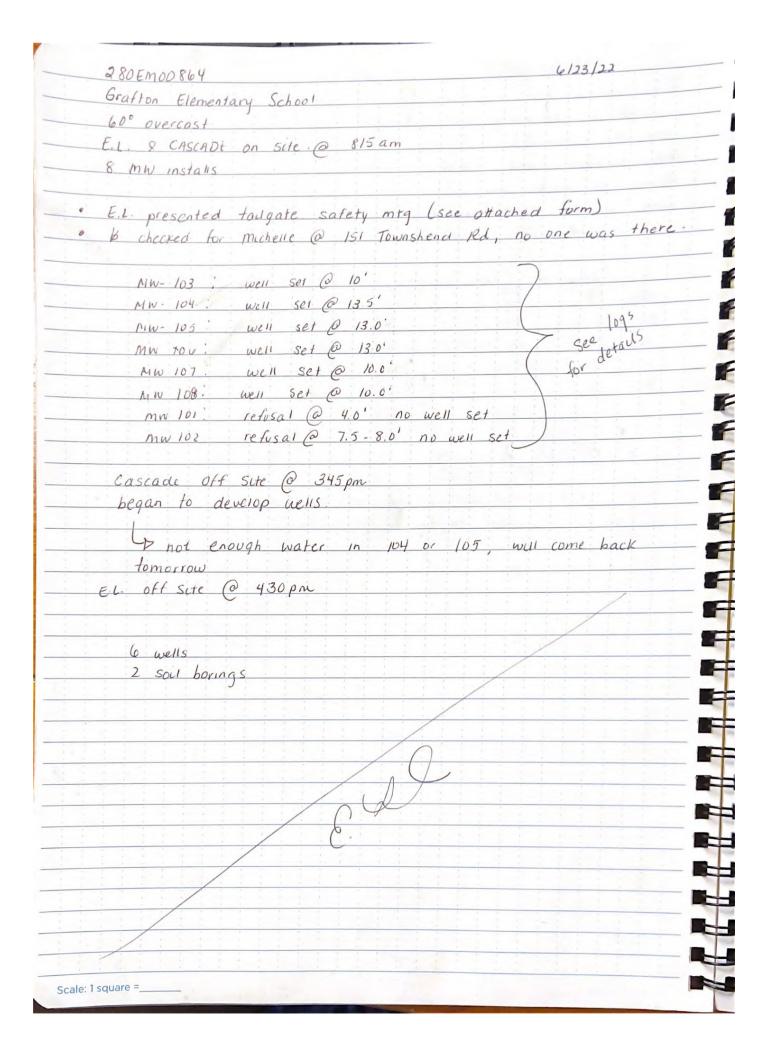
Tried knocky on both doors, no answer; ledt note of agreement in Provos door. Make some passes of 6PR just in case. Near house Hire pit OK.


**See note on Page 2 (#4)

(5) (7) All DW only, no PUL needed (8) 193 Toursherd (MW-102) in partire lot near fence (MW-103) on edge of field hear pond faccess where through school playground to print + sign access agreement + give to Jo of Emma #9(10)(12) DW only, no PUL needed (B122) Scale: 1 square =

cont. Grafton 1) 72 school 34 (MW-107) Blacksmith Shop - no water source of soptie; both buildings belone to Windham Foundation! Placed well in longer grass. All clear for UL. All locations called in for DysSafe; Ticket #8 are; 20222310469 0489 0498 0477 0503 To do list prior to next weeks drilling , 1 Call Michelle re: 151 Townshend access and fence access (2) Call femail Terry re: 47 School access + 15 School for DW 3) Let Cascade knew: a) brig mats, seed & mulch b) all locations in grass (no asphalt) Wall wells to be flush mount d) remind about decon for PF13 between locations e) no Verizon cell coverage, ATTT is good (4) Enast copy of access agent. to Liz Provo; she got home and signed it. Owners of 15 School are is longer Terry Peulah Dargle - now Logan + Jacelyn Brown - keep rig on asphalt driveway, install J MW - 108 off corner of house 1300 offste

Rete in the Rain


ì

__₩

180000864 Fraffon School 78/22 DW + Survey 0900 ponsite weather 870° sunny - sample 10 DW's for 537.1 - survey new (6) and old (4) wells w/ South Smith of LEG (10 am) - see water supply forms 15 School St Res-6 @ 0915 Res-6 FB @ 0910 47 School St. Res-4 @ 8930 Res-4FB @ 0925 108 Pleasant St Ros-12 @ 1000 Res- 12FB @ 0958 Res-10 @ 1100 136 Kidder Hill Rd. Res-10 FB @ 1058 lele Pleasant St. Res-3 @ 1240 Ros-3 FB @ 1238 1300 LEG offsite, surveyed all but MW-4 94 Pleasant St. Res-5@ 1310 Res-5 PB @ 1308 72 Kidder Hill Id. Ros-9 @ 1340 les-9FB @ 1338 Res - 8 @ 1410 193 Townshead Ld Res-8 FBC 1408 30 Pleasant St. Res-7 @ 1430 Res-7 FB @ 1428 pg lof2

1806400864 conf. 7/8/22 - Karl not available - Norks part Ame now; met Matt Hasel time who provided access Mhaseltine & windham -foundation. org 151 Townsherd Rd. Res-1 @ 1500 Res-1 FB @ 1450 1510 JP offsite

6- Cloudy 6/24/22 /01/ E.L. on sire @ 630 am to develop wells installed on 6/23/22 111111 6/23/22 MW- 103 : high recharge mw-108; med recharge (went dry recharged in 10-15 mins) MW-104, MW-105, MW-106 : Only 1-2" of water, very low recharge. one was there. See details * purge water in drum near school. NS gallons total come back EL off site 1230 100 Rete in the Rein Scale: 1 square =_

1		15		BORING	/ WELL IDE		MW-101
					SITE NAME:	Gia	Etna Elementary School
51 KNIGHT LANE	/00/	2) 000 4000			SITE LOCATION:	58	school Street Grafton V
WILLISTON, VERMON	T 05495 (737	2) 862-1980 7) 207-8272 - F	FAX		INSTALLATION DATE:	6/2	3/22
WELL DEPTH:					JOB NUMBER:		m00864
		BORING DEPT	TH:	4.01	ATLAS REPRESEN	TATIVE:	Emma L.
DEPTH TO WATER (DUI	RING DRILLING):				DRILLING COMP.		Omma P
SCREEN DIAMETER:	150	DEPTH:			Didianio com	1141.	CASCADE
SCREEN TYPE/SIZE:	SIDHER	PVC			SAMPLING METH	OD:	
RISER DIAMETER:	151	DEPTH:			REFERENCE POIL		DPT
RISER TYPE/SIZE:	FVE	224 11.					
REMARKS:	REFU	ISAL			ELEVATION OF R	<i>P</i> :	

DEPTH (IN FEET)	RECOVERY (FT)	SAMPLE DESCRIPTION AND NOTES	STRA TA CHAN	PID (PPM)	WELL PROFILE	LEGEND
0		grey - white sand and	GE			Concrete
1		grushed gravel				₩.
2						Native
3		bedrock (?) fragments			-	Bentonite
4		refusal @ 4.0'				
5					-	Filter Sand
		* exposed bedrock near proposed				
6		mw-101 to south & west				Riser
7						Screen
8						
9						
10						Water level
11						
12						
13		,			-	
14					-	
15					-	
16						
		1				
17						
18						
19						
20						

PROPORTIONS USED AND 33-50% SOME 20-33% 2-4 SOFT SOFT SOFT TRACE 0-10% 15-30 SOFT S	BLOW COUNT (GRANULAR SOILS) 0-4 4-10 LOOSE 10-30 MEDIUM DENSE 30-50 DENSE >50 VERY DENSE	Notes: PID used: IonScience Tiger
--	--	-----------------------------------

:49#C1

Λ-				BORING / Y	WELL IDE	NTIFI(CATION:	M W-102
7		13	_		SITE NAME:	Graft	on Flementary	School
i					SITE LOCATION:	58	on Elementary School Street	Grafton,
51 KNIGHT LANE		2) 862-1980		Ins	TALLATION DATE:	1	3/22	
Williston, Vermon	T05495 (737	') 207-8272 - F	AX		JOB NUMBER:		Em 0 0 864	
Well Depth:		BORING DEPT	Н:		ATLAS REPRESEN	ITATIVE:	Emma L.	
DEPTH TO WATER (DU	RING DRILLING):				DRILLING COMP.	ANY:		,
SCREEN DIAMETER:		DEPTH:					CASCADE	
SCREEN TYPE/SIZE:					SAMPLING METH	TOD:	DPT	
RISER DIAMETER:		DEPTH:			REFERENCE POL	NT (RP):		
RISER TYPE/SIZE:					ELEVATION OF R	P:		
REMARKS:	٠							

DEPTH (IN FEET)	RECOVERY (FT)	SAMPLE DESCRIPTION AND NOTES	STRA TA CHAN	PID (PPM)	WELL PROFILE	LEGEND
			GE	NIA		
0		brown fine - medium sand trace gravel	×	У		Concrete
1				X		· Native
2	350			Þ		Ø
3	75,0	grey-white Sand 2 crushed gravel	Ж	\aleph		Bentonite
4				У		Filter Sand
5		1-		×		
6				×		Riser
7		crushed bedrock (?) refusal @ 8.0'		У		Screen
8		refusal @ 8.0'				
9		* set over 5' to try again				Water level
10	•	- refusal @ 7.5'				
11						
12		•				
13						
14						į
15		•				
16)]	
17						
18		•				
19						
20						

SOME 20-33% 2- LITTLE 10-20% 4- TRACE 0-10% 8- 15	BLOW COUNT (COHESIVE SOILS) 2 VERY SOFT 4-8 MEDIUM STIFF 8-15 STIFF 15-30 VERY STIFF 30 HARD	BLOW COUNT (GRANULAR SOILS) 0-4 VERY LOOSE 4-10 LOOSE 10-30 MEDIUM DENSE 30-50 DENSE >60 VERY DENSE	Notes: PID used; IonScience Tiger .
--	---	---	-------------------------------------

A	FLA		BORING /	WELL IDEN	VTIFIC	CATION: MW-103	
				SITE NAME:	Gro	acton Elem.	
				SITE LOCATION:		School St. Grafton, VT	
51 KNIGHT LANE (802) 862-1980 WILLISTON, VERMONT 05495 (737) 207-8272 - FAX			IN	STALLATION DATE:			
WILLISTON, VERMONT 05495 (737) 207-8272 - FAX				Job Number:			
Well Depth:	10.0'	BORING DEPTH:	10.0'	ATLAS REPRESEN	TATIVE:	E.L.	
DEPTH TO WATER (DU	RING DRILLING):	3.5°		DRILLING COMPA	ANY:	4.4.0.4.1	
SCREEN DIAMETER:	1,5'	Depth:	5.0 - 10.0'			CASCADE	
SCREEN TYPE/SIZE:	Slotted	PVC		Sampling Meth	OD:	DPT	
Riser Diameter:	1.5'	DEPTH:	5.0 - 0.0'	REFERENCE POI	VT (RP):		
RISER TYPE/SIZE;	PVC			ELEVATION OF R	P:		
REMARKS:						•	

DEPTH (IN FEET)	RECOVERY (FT)	SAMPLE DESCRIPTION AND NOTES	STRA TA	PID (PPM)	WELL PROFILE	LEGEND
, ,	, ,		CHAN GE			
0		d brown top soil, sully Sand wloiganics		X	8 B	Concrete
1 .		TI. brown fine sand wigrarel		X	8	. Native
2	25			У	1/11/	
3		[dark brown fine sand w/ trace]		X	13/2	Bentonite
4		Silt, wet		×	ANN THE PROPERTY OF THE PROPER	Filter Sand
5		r saa		×	- AMMANAMANANANA	
6				X	- HERMANANANANANA	Riser
7	3.0			×	1:1=1:	Screen
8				×		
9		grey suity sand w/gravel, dense		X		Water level
10	•	well set @ 10.0'				T
11		WEIL SET 10.0				
12						
13						1
14					-	
15					1	
16)			1	
17						
18						
19						
20						

PROPORTIONS USED AND 33-50%	<2	OUNT (COHESIVE SOILS) VERY SOFT	0-4	OW COUNT (GRANULAR SOILS) VERY LOOSE LOOSE	Notes: PID used; I onSolonge Tiger
SOME 20-33% LITTLE 10-20%	2-4 4-8	SOFT MEDIUM STIFF	4-10 10-30	MEDIUM DENSE	TID used: I oneolouee Figo
TRACE 0-10%	8-15 15-30	STIFF VERY STIFF	30-50 >50	DENSE VERY DENSE	
	>30	HARD			

A	FLA	ع		BORING/	WELL IDE	NTIFI(CATION: MW-104
					Site Name:	Gras	Cton Elementary School
					SITE LOCATION:	58 5	School St. Graffon, YT
51 KNIGHT LANE (802) 862-1980				II.	INSTALLATION DATE: 6/23/23		
Williston, Vermont 05495 (737) 207-8272 - FAX		JOB NUMBER: 280Em 00864					
Well Depth:	13.5	BORING DEPT	Ŧ:	13.5'	ATLAS REPRESEN		E.L.
DEPTH TO WATER (DU	RING DRILLING):	8.5	·	Drilling Com		ANY:	
SCREEN DIAMETER:	1.5"	DEPTH:	8	1.5' - 13.5'			CASCADE
SCREEN TYPE/SIZE:	Slotted 1	orc			SAMPLING METH		DPT
Riser Diameter:	1.5"	DEPTH:	(0-8.5'	REFERENCE POL	NT (RP):	
RISER TYPE/SIZE:	PVC				ELEVATION OF R	P:	
REMARKS:	,						

DEPTH (IN FEET)	RECOVERY (FT)	SAMPLE DESCRIPTION	STRA TA	PID (PPM)	WELL PROFILE	LEGEND
(111121)		AND NOTES	CHAN GE	NIA		
0		8"d brown topsoil, sulty sand wlorganics	×	X -	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Concrete
1 .		gray lorange medium sand wi fine gravel & gravel	X	×		· Native
2	3.0%			у		Z
3	/5.0			X	19/2	Bentonite
4				×_		Filter Sand
5				×	JOHN WINNING WAS	
6				X		Riser
7	4.5/5.0			人		Screen
8	7 5.0	flight brown sit & Fine sand	×	<u> </u>		
9		- color mottling		又		Water level
10	,			Х		Y
11	3.5/26			X		
12	/ 3.			Х		
13					٠٠ السلمة الم	
14		refusal @ 13.5' well Set @ 13.5'			-	
15		. 307				
16		V				
17						
18		·				
19						
20						

PROPORTIONS USED AND 33-50% SOME 20-33% LITTLE 10-20% TRACE 0-10% S-15 STIFF 15-30 VERY STIFF >30 HARD	BLOW COUNT (GRANULAR SOILS) 0-4 VERY LOOSE 4-10 LOOSE 10-30 MEDIUM DENSE 30-50 DENSE >50 VERY DENSE	Notes: PID used; I onScience Tige r
---	---	---

A		2		BORING	/ WELL IDEN	VTIFIC	CATION:	MW-105
					SITE NAME:	Grat	ton Flemer	ntary School
					SITE LOCATION:	58 Sc	chool Street	Grafton, VT
51 KNIGHT LANE (802) 862-1980					INSTALLATION DATE: 6/23/22			
Williston, Vermont 05495 (737) 207-8272 - fax				Job Number:	280E			
Well Depth:	13.01	BORING DEPTH	<i>1</i> :	18.5'	ATLAS REPRESEN		Emma. L	1
DEPTH TO WATER (DU	RING DRILLING):	8.5'			DRILLING COMPA	ANY:	ansent	r.
Screen Diameter:	1.5"	DEPTH:	8,	0 - 13.0'			CASCAD	t
SCREEN TYPE/SIZE:	S10 Hed	PVC			Sampling Meth	OD:	DPT	
Riser Diameter:	1.5"	DEPTH:	0-	8,01	REFERENCE POII	ν <i>τ (RP):</i>		
Riser Type/Size:	PYC				ELEVATION OF R	P:		
REMARKS:							•	

DEPTH (IN FEET)	RECOVERY (FT)	SAMPLE DESCRIPTION AND NOTES	STRA TA	PID (PPM)	WELL LEGEND PROFILE
`			CHAN GE	NIA	
0		6" d. brown Topsoil whorganies prown Silly sand whine gravel	X.	X.	Concrete
1 .				Х	Native
2	4.0'	grey & orange medium sand w/	х	X	
3	5.0			X	Bentonite
4				×	Filter Sand
5				Х	
6	5.01			×	Riser
7	3./6.0			Х	Screen
8		-light brown sut all fine sand	X	Х	
9				X	Water level
10		2" of clean fine sand		X	
11	87/			X.	
12	13,5			*	
13				X	, E.L.
14		refusal @ 13.5' well set @ 13.0'			
15		Well Sci (C 1)			
16		,			
17					
18		,			
19					
20					

PROPORTIONS USED AND 33-50% SOME 20-33% LITTLE 10-20% TRACE 0-10%	BLOW COUNT (COHESIVE SOILS) <2 VERY SOFT 2-4 SOFT 4-8 MEDIUM STIFF 8-15 STIFF 15-30 VERY STIFF >30 HARD	BLOW COUNT (GRANULAR SOILS) 0-4 VERY LOOSE 4-10 LOOSE 10-30 MEDIUM DENSE 30-50 DENSE >50 VERY DENSE	Notes: PID used; IonScience Tiger
---	--	---	-----------------------------------

1	FLA	2		BORING/	WELL IDE	VTIFIC	CATION: MW- 106
			_		SITE NAME:	Grat	ton Flementary School
					SITE LOCATION:	58 3	ton Flementary School School St. Graffon, VT
51 KNIGHT LANE				In	NSTALLATION DATE:	6/23	
Williston, Vermont 05495 (737) 207-8272 - fax			Job Number:		Em.00864		
Well Depth:	13.01	BORING DEPT.	H:	13.6'	ATLAS REPRESEN	ITATIVE:	Emma L.
DEPTH TO WATER (DU	RING DRILLING):				DRILLING COMP.	ANY:	
SCREEN DIAMETER:	1.5"	DEPTH:	`	8.0-13.01			CASCADE
SCREEN TYPE/SIZE:					SAMPLING METH	TOD:	DPT
Riser Diameter:	1.5"	DEPTH:	(0.0-8.01	REFERENCE POI	NT (RP):	-
RISER TYPE/SIZE:	PYC				ELEVATION OF R	P:	
REMARKS:							,

DEPTH	RECOVERY	SAMPLE DESCRIPTION	STRA TA	PID (PPM)	WELL LEGEND PROFILE
(IN FEET)	(FT)	AND NOTES	CHAN		FROFILE
		with a la Taggard to larganics leather Sound	GE ×	NIA	Concrete
0		8" d. br. Topsoil wlorganics (sitty Sand). 3" orange fine Sand 6" crushed grey /white gravel pieces	x	Х	1 31 132 1 KC 1
1 .			×	X	
2	250	di brown fine - medium sand wisome	X	K	
3				X	Bentonite
4				*	Filter Sand
5				X	
6				Х	Riser
. 7	155			×	Screen
8	50			*	Water level
9		flight brown silt wil fine sand	<u> </u>	χ	Water level
10	,			×	▼
11	3.0			Χ.	
12				火	
13		refusal @ 13.0'			
14					
15		,			
16		,			
17					
18					
19					
20					

PROPORTIONS USED AND 33-50% SOME 20-33% LITTLE 10-20% TRACE 0-10%	BLOW COUNT (COHESIVE SOILS) <2 VERY SOFT 2-4 SOFT 4-8 MEDIUM STIFF 8-15 STIFF 15-30 VERY STIFF ' >30 HARD	BLOW COUNT (GRANULAR SOILS) 0-4 VERY LOOSE 4-10 LOOSE 10-30 MEDIUM DENSE 30-50 DENSE >50 VERY DENSE	Notes: PID used: IonScience Tiger .
---	--	---	-------------------------------------

A	FL/	-	-	BORING/	WELL IDE	VTIFI(CATION:
					SITE NAME:	Graf	ton Elementary School
					SITE LOCATION:		chool St. Grafton VI
51 KNIGHT LANE (802) 862-1980 WILLISTON, VERMONT 05495 (737) 207-8272 - FAX			IN	INSTALLATION DATE: 6/23/22			
VVILLISTON, VERMON	ron, Vermont 05495 (737) 207-8272 - fax			JOB NUMBER:		Em 00 864	
Well Depth:	10.0	BORING DEPT.	н:	10.0	ATLAS REPRESEN	ITATIVE:	Emma L.
DEPTH TO WATER (DU	RING DRILLING):	4.5	′		DRILLING COMP.	ANY:	
SCREEN DIAMETER:	1.5"	DEPTH:	1.3	5.0. 10.0			CASCADE
SCREEN TYPE/SIZE:	Stotled	Slotted Pre			Sampling Meth	IOD:	PPT
RISER DIAMETER:	1.5"	DEPTH:		0.0-5.0'	REFERENCE POL	NT (RP):	
RISER TYPE/SIZE:	PVC				ELEVATION OF R	P:	
REMARKS:					-		•

DEPTH	RECOVERY	SAMPLE DESCRIPTION	STRA	PID	WELL	LEGEND
(IN FEET)	(FT)	AND NOTES	TA CHAN	(PPM)	PROFILE	
			GE	NIA		
0		6" d. brown topsoil, sulty sand wlorganies.	*	×	8 B	Concrete
1 ,		light brown silty sand wil fine gravel	×	х	PANANKA WANTER	. Native
2	4.0	becomes darker brown		X	WANAWANAMA XX	Ø
3	5.0			У		Bentonite
4		grey fine sund witrace sul	*	x		Filter Sand
5				×	- -	
6	Ó	- trace fine gravel		χ] : - ;	Riser
7	50			У		Screen
8		orange & brown fine - med sand	*	人		
9				Х		'、 'Water level
10		well set @ 10.0'				X
11				,		
12		·				
13						
14						
15						
16)				
17	-					
18		•				
19						
20						

PROPORTIONS USED AND 33-50% SOME 20-33% LITTLE 10-20% TRACE 0-10%	BLOW COUNT (COHESIVE SOILS) <2 VERY SOFT 2-4 SOFT 4-8 MEDIUM STIFF 8-15 STIFF 15-30 VERY STIFF >30 HARD	BLOW COUNT (GRANULAR SOILS) 0-4	Notes: PID used: Io nScience Tige r
---	--	---------------------------------	---

Manager and the second		فالمراء والمحادث والمحادث والمحادث والمحادث	and the same of	many to the control of the control o			المستعمدة والمراجع والمستعدد والمستعد والمستعدد والمستعد والمستعدد والمستعد والمستعدد والمستعد والمستعدد و	
		C		BORING	/ WELL IDEN	VTIFIC	CATION:	EL. MW-108
					SITE NAME:	Grat	ton Elemen	lary School
					SITE LOCATION:		School St.	Grafton, VT
51 KNIGHT LANE					Installation Date:		3/12	
Williston, Vermont 05495 (737) 207-8272 - fax		AX		JOB NUMBER:				
Well Depth:	10.0'	BORING DEPT.	H:	10.0	ATLAS REPRESEN		Emma L.	
DEPTH TO WATER (DU	RING DRILLING):	7.	0'		DRILLING COMPA	ANY:		
Screen Diameter:	1.5"	DEPTH:	4	5-10.01			CASCADE	
Screen Type/Size:	siotted	PVC			Sampling Meth	OD:	DPT	
Riser Diameter:	1.51	DEPTH:	O	1 5,0	REFERENCE POII	ντ (RP):		
RISER TYPE/SIZE:	PYC		,		ELEVATION OF R	P:		
REMARKS:							•	

DEPTH (IN FEET)	RECOVERY (FT)	SAMPLE DESCRIPTION	STRA TA	PID (PPM)	WELL PROFILE	LEGEND
(111111)	((1)	AND NOTES	CHAN GE	NIA	I ROFFEE	
0		4" a. br. topsoil, silty sand wlorganics.	<i>/</i>	<u>ж</u>	818	Concrete
1	3.5/	light brown fine sand witine gravel	*	×		· Native
2	3.		·	λ	Shaller I	
3	/ '2'	grey - light gicy time sand - grad	×	ኦ	INTO AND IN	Bentonite
4				Х		Filter Sand
5				X		
6		1 1100		λ		Riser
. 7	4.0	orange/brown suity sona w/ tgravel		λ		Screen
8	75.0			X]. [].	
9				X] . [] .	Water level
10		refusal (0 100'				Y
11		refusal @ 100' Well set @ 10.0'				
12						
13						
14						
15		·				
16		,			<u>}</u>	
17						
18						
19						
20		-			The second secon	

,

PROPORTIONS USED AND 33-50% SOME 20-33% LITTLE 10-20% TRACE 0-10%	BLOW COUNT (COHESIVE SOILS) <2 VERY SOFT 2-4 SOFT 4-8 MEDIUM STIFF 8-15 STIFF 15-30 VERY STIFF ' >30 HARD	BLOW COUNT (GRANULAR SOILS) 0-4 VERY LOOSE 4-10 LOOSE 10-30 MEDIUM DENSE 30-50 DENSE >50 VERY DENSE	Notes: PID used; Y onScience Tig er .
---	--	---	--

Grafton 1	Tementary	School			7/11/22
	site GW				15° suna
EL on site	@ 825am	found & o	pened all wells		
UP on site	gam				
	DTW	DTB		1	
MW-1	dry	7.21		-	
2	dry	7.15		-	
3	dry	10.60			
4	dry	10,97		-	
mn-103		9.61	A duplicate taken	1025	
104	dry	13.22			
105	dry	13:43		1	
106	12.52	13.55		41.0	
107	4.65	9.68		1/35	
801	KP			-	
4					
. 0	d , samplea site @ 1345		11 wells (see attac)	ud for	dala)
. 0			Il wells (see attac)	ud for	dala)
0			Il wells (see attac)	ud for	dala)

Grafton Separal 280EM00864 7/11/22 Pg-1/1

- Arrived onsite @0900
- EL gauged wells while I calibrated YSI/Turbidimuters
- LD 6/10 wells were dry

- MW108 Started sampling @ 1015 -> Sampled @ 1053

- MW10b Storted @ 1110 > sampled @ 1145 [well went dry - sayly got 1751 red)

45 well Never recharged

- Field Blank @1130

- Ea Blank @ 1135

-Left site @ 1235

Hall

$Well \ Sampling \ Form-Page \ 1 \ of \ 2$

Site Name/Location: Grafton Flem. School Date: 7116/22
Sample I.D.: NW - 10 3 Collection Time 1025
Sampling Sequence: / Of 4
Atlas Field Staff Collecting This Sample: <u>Emma L</u>
Climatic Conditions (Temp/Precip): 70° Swny
Depth To Product: None Feet Depth To Water: 5.60 Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe) WLM
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 9 6
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe) Jubin 9
Submitted For Analysis By (Method or Methods): FFNS
Field Test Results (HACH Kits):
Alkalinity: Chloride:
Iron (II): Sulfate:
Notes: sampled of 1025
- A Dup) water
· · · · · · · · · · · · · · · · · · ·

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: Graffon Elen. School Depth To Of Screen (Below RP) Well Id: MW - Wh Top Bottom Field Personnel: Fmma L Pump Intake Depth: Reference Point (RP - TOC or other-describe): Pumping Device: Time Depth To Purge Rate Turbidity Specific ORP/ DO Pump Cumulative Temperature pН Comments mL/min) (24 Hr) Water Speed Volume °C. Conductance ±0.1 eН (Mg/L) (NTU) (ft) Purged 3% (mV) (uS/cm) 10 % 10% 3% ±10 1000 STAR 5.60 0.5 1005 100 3321 5.68 1121 0.77 48.6 1010 5.68 100 17.2 297.1 0.37 (05.9 0.50 20-9 5.68 100 1015 1.5 44.7 0-43 6-37 296.2 10.2 100 2:0 5.68 6.36 1020 295.8 17.2 6.44 may 2 40.1 Notes: Sample collected 10 1025

$Well \ Sampling \ Form-Page \ 1 \ of \ 2$

Site Name/Location: Grafton Elem. School Date: 7/11/22
Sample I.D.: MW 107 Collection Time #36
Sampling Sequence: Of Of
Atlas Field Staff Collecting This Sample:
Climatic Conditions (Temp/Precip): 75° SWAY
Depth To Product: Nove Feet Depth To Water: 4 65 Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method: None
Total Depth Of Boring (Take Measurement After Sampling):
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)
Submitted For Analysis By (Method or Methods):
Field Test Results (HACH Kits):
Alkalinity: Chloride:
Iron (II): Sulfate:
Notes:
sampled (2 1135.
·
,

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS-

				Low-	Flow Well S	ampling For					
Location	M W-	107				Depth T	o	N45		19.68	Of Screen (Below RP)
Well Id:	Graft	en Elem.	Schoo	and another state of the state				Top		Bottom	•
		EMMal.				Pump In	take Depti	1:	<u>v7'</u>		
Referenc	e Point (RP	- TOC or othe	r-describe):	106		Pumping	g Device:_	APOBUN	p		
Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C 3%	Specific Conductance (uS/cm) 3%	pH ±0.1	ORP/ eH (mV) ±10	DO (Mg/L) 10 %	Turbidity (NTU) 10%	Comments
	4-65	100	-	4 START				•			•
1105	4,96	loo		0.5	1971.	209.9	6.23	98.2	0.43	102	
HiO	4.98	jon		1.0	13.2	204-6	5-84	80.6	0.61	74,4	
1115	4,98	joo	•	1.5	13.2	200,9	5.82	64.5	0.50	38.4	•
1120	. 4.98	- 100		2.0	13.1	196.9	5.83	51.1	0.53	19.5	
1125	4.48	100		2.5	13.1	195.4	5.85	43.2	0.92	7.2	
1.130	4.98	100		3,0	13.2	194.2	5.84	45.2	0.54	5.6	
	_										
				,		-					*
Notes:			500	role co	Nistal	C	11 35				
· · · · · · · · · · · · · · · · · · ·	r	•	•				,	· · · · · · · · · · · · · · · · · · ·		•	
				÷							`
								······································			

Well Sampling Form - Page 1 of 2

Site Name/Location: Gwatton School Date: 4/11/22
Sample I.D.: MW-106 Collection Time 1145
Sampling Sequence: Of 2
Atlas Field Staff Collecting This Sample: K. PHS
Climatic Conditions (Temp/Precip): Sunny 85°
Depth To Product: Feet Depth To Water: 13.25 Feet
Reference Point (TOC or other -Describe) TOC
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 13.55
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe) + 1/2 bing
Submitted For Analysis By (Method or Methods): 537-0 Mod
Field Test Results (HACH Kits):
Alkalinity: Chloride:
Iron (II): Sulfate:
Notes:
·

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS-

Low-Flow Well Sampling Form - Page 2 of 2 13.55 8.55 Of Screen (Below RP) Grafton School Depth To Location: Well Id: MW-106 Top Bottom ~13 Field Personnel: R, Pitts Pump Intake Depth: Per: Reference Point (RP - TOC or other-describe): . . TOC Pumping Device: ORP/ Turbidity Temperature °C Specific OC Comments Depth To Purge Rate Time Pump Cumulative pH (Mg/L) (24 Hr) Water mL/min) Speed Conductance .±0.1 eН (UTU) Volume (uS/cm) 10 % 10% (ft)3% (mV)Purged ±10 3% Start 125 1120 1125 6.41 15.5 13.34 146 7.12 13.4 444.6 100 0-5 1130 13.55 Notes: well went dry after 10 minutes 15 to waited 45 imputes Well Never recharged couldn't get a sampled well was a good condition otherwise water was clear/bottom felt good

ATLAS

Well Sampling Form - Page 1 of 2
Site Name/Location: MW-1 Grafton School Date: 7/11/22
Sample I.D.: MW-108 Collection Time 1053
Sampling Sequence: Of 2
Atlas Field Staff Collecting This Sample: K. P.H.S
Climatic Conditions (Temp/Precip): Sunny 85°
Depth To Product: Feet Depth To Water: Feet
Reference Point (TOC or other -Describe) TOC
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 9.69
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe) † ub) \(\frac{1}{2} \)
Submitted For Analysis By (Method or Methods): 537-NoD (PPA5)
Field Test Results (HACH Kits):
Alkalinity: Chloride: Sulfata
Iron (II): Sulfate:
Notes:
· · · · · · · · · · · · · · · · · · ·
·

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS-

				Low-	Flow Well Sa	impling For	n – Page	e 2 of 2			
Location	: Gre	ston S	Chool			Depth To	·	4.69	<u> </u>	1 9.69	Of Screen (Below RP)
Well Id:	MW~		7					Top		Bottom	,
Field Per	sonnel:	NP				Pump In	take Depti	ı:	8.44	•	
		TOC or other	r-describe):	.TOC		Pumping	Device:_	peri			
				**************************************	o						
Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C 3%	Specific Conductance (uS/cm) 3%	pH ±0.1	ORP / eH (mV) ±10	DO (Mg/L) 10 %	Turbidity (NTU) 10%	Comments
1020	5.43	100					· —			_	Stort
1025	5.66	100	~	0.5	16.2.	.3223	6.26	26.6	0.04	529	
1030	5.64	100	_	i .0	16.2	3896	6.07	59.1	0.27	211	
1035	5.64	100	,	1.5	i6.1	4167	6.00	66.9	6.22	243	
1040	5.66	100	_	2.0	16.2	4373	5.93	75.9	0.23	162	•
1045	5.66	100	-	· 2.5	16.1	449a	5.89	81.7	0.29	99.7	
1,050	5,66	100	. –	3.0	16.1	4509	5.85	84.8	0.33	56.7	-
	-					-					
		,									
				•							
Notes:			Same	ied @	i053			J	<u></u>		
								•			
•	•	*	•				•	· · · · · · · · · · · · · · · · · · ·		•	•
,											•
						•			•		

						. T
	·			YSI MULTIPARAI	METER METER	₹
Serial No.: Site Name: Instrument is calibra	Grafton Scated in accordance with Manuf		Model No.; _	: 446 H 280EH008464	Decal No.:	
DATE 7/11/22	Pre Calibration Readings	Post Calibration Readings	PM Check	Calibration STDs (lot #s)	Signature	Remarks
Cond. mS/cm	893	1423	1418		KutA	
pH=4_0	3.86	3.99	4:02		1704	
pH=7.0	6.70	7.0	6.88			
pH=10.0	9. 76		9.92			-
D.O. mg/l / % 100	96.6 KP 91.2	10.02 97.3 KP 101.3	93.4			
ORP mV	178	217.5	224.3		-	
Temp C	27.8					
Baro. Press, mmHg	737	<u> </u>				
	•				W	
•						
DATE:						
Cond: mS/cm						·
pH=4.0						
pH=7.0						
pH≃10,0						
D.O mg/l / %						
ORP mV					-	
Temp C						
Baro, Press, mmHg						
					<u> </u>	

.-

	,		TURBIDITY METER CALIBRATION LOG									
INSTRUMENT NAME:	Geot	L No.:										
SERIAL No.:			DECAL	No.: 436	98	•	CHARGE No					
CALIBRATION DATE	CALIBRATION CAL. STANDARD 1 -		CAL STANDARD 2 - 20 AM / PM		CAL, STAND		SIGNATURE	comments am on				
7/11/22	60.0	0.02	20,0	19.6	104	101	-	806 798				
								:				
					,							
	-					-						
								-				
			, ,			-		·				
-												
·												
						-:	·	_				

:

.

/										
-			YSI MULTIPARAMETER METER							
Serial No.: Site Name: Instrument is calibra	eted in accordance with Manu	facturer's Instructions	Model No.; Job No.; _	: 6549	Decal No.:					
DATE 7/1/20	Pre Calibration Readings	Post Calibration Readings	PM Check	Calibration STDs (lot #s)	Signature	Remarks				
Cond. mS/cm pH=4.0 pH=7.0 pH=10.0 D,O. mg/l / % ORP mV Temp C Baro. Press, mmHg	1222 3.82 6.88 9.89 96.6 177 22.8 7237	1413 4.02 7.02 10.00 94.3 219.4	1553 4.29 7.24 10.11 95.0 223.1		jach -					
DATE: Cond: mS/cm	-									
pH=4.0						, L				
pH=7.0										
pH=10,0										
D.O mg/l / %										
ORP mV										
Temp C						-				
Baro. Press. mmHg			 							

1

.

. ,

									1		
			TURBIDITY METER CALIBRATION LOG								
INSTRUMENT NAME:	ded	Turbidio	refer		MODE	EL No.:					
SERIAL No.:		DECAL N	10.: <u>67</u>	30	•	CHARG	E No				
	STANDARD 1 - CO.O.Z. AM / PM	CAL. STANDA		CAL, STANDA & C AM	ARD 3 - 2 🖎 / PM	SIGNATU	RE	com	MENTS		
7/11/22 00		20.0	28.9	112-	10-1	In		813	789		
		-				V		,	:		
		·									
·	·		• •	-				-	•		
	-				-		•				
					-						
	-					_					
			•								
		' '	•		-			· .			
					:						

APPENDIX B

PHOTOGRAPHS

PHOTOGRAPHS

Client Name: VT DEC Site Location: Grafton Elementary School 58 School Street Grafton, VT

Atlas Project #: 280EM00864

Photograph #1 Description: Res-1 (151 Townshend Road)

supply well location.

Photograph #2 Description: Res-2 (70 School Street) supply well location (circled in red).

PHOTOGRAPHS

Client Name: VT DEC Site Location: Grafton Elementary School 58 School Street Grafton, VT


Atlas Project #: 280EM00864

Photograph #3 Description: Res-3 (66 Pleasant Street) supply well location.

Photograph #4

Description:
Res-4 (47 School
Street) supply well
location – flush with
ground in center of
flower bed.

PHOTOGRAPHS

Client Name: VT DEC

Site Location: Grafton Elementary School 58 School Street Grafton, VT

Atlas Project #: 280EM00864

Photograph #5 Description: Res-5 (94 Pleasant Street) supply well

location.

Photograph #6

Description: Res-8 (193 Townshend Road) supply well location - under raised flower box.

PHOTOGRAPHS

Client Name: VT DEC Site Location: Grafton Elementary School 58 School Street Grafton, VT

Atlas Project #: 280EM00864

Photograph #7
Description:
Res-10 (136 Kidder
Hill Road) supply
well location in back
yard.

Photograph #8
Description:
Res-12 (108
Pleasant Street)
supply well location
– under tree line.

PHOTOGRAPHS

Client Name: VT DEC Site Location: Grafton Elementary School 58 School Street Grafton, VT

Atlas Project #: 280EM00864

Photograph #9 Description:

Drilling on 6/23/2022 at offsite properties near GES. This is the attempted MW-102 location.

Photograph #10

Description:

An example of soil lithology in soil borings collected on 6/23/2022. Some mottling is visible near the water table.

PHOTOGRAPHS

Client Name: VT DEC Site Location: Grafton Elementary School 58 School Street Grafton, VT

Atlas Project #: 280EM00864

Photograph #11 Description: Location of newly installed MW-103 near the pond, located south of GES.

Photograph #12 Description: Location of the purge water drum near the GES building.

APPENDIX C

ANALYTICAL LABORATORY REPORTS

August 22, 2022

Jo Palmer ATC Group Services LLC - Vermont 51 Knight Lane, PO Box 1486 Williston, VT 05495

Project Location: Grafton, VT

Client Job Number:

Project Number: 280EM00864

Laboratory Work Order Number: 22G0691

Enclosed are results of analyses for samples as received by the laboratory on July 13, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
22G0691-01	5
22G0691-02	6
22G0691-03	7
22G0691-04	8
22G0691-05	9
22G0691-06	10
Sample Preparation Information	11
QC Data	12
Semivolatile Organic Compounds by - LC/MS-MS	12
B313896	12
Flag/Qualifier Summary	15
Internal standard Area & RT Summary	16
Certifications	25
Chain of Custody/Sample Receipt	27

ATC Group Services LLC - Vermont 51 Knight Lane, PO Box 1486 Williston, VT 05495 ATTN: Jo Palmer

REPORT DATE: 8/22/2022

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 280EM00864

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 22G0691

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Grafton, VT

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-108	22G0691-01	Ground Water		SOP-454 PFAS	
Field Blank	22G0691-02	Ground Water		SOP-454 PFAS	
Eq Blank	22G0691-03	Ground Water		SOP-454 PFAS	
MW-107	22G0691-04	Ground Water		SOP-454 PFAS	
MW-103	22G0691-05	Ground Water		SOP-454 PFAS	
Dup	22G0691-06	Ground Water		SOP-454 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP-454 PFAS

Qualifications:

L-01

Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.

Analyte & Samples(s) Qualified:

N-MeFOSAA B313896-BSD1

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

M2PFTA

22G0691-04[MW-107], 22G0691-05[MW-103], 22G0691-06[Dup]

M8FOSA

22G0691-04[MW-107], 22G0691-05[MW-103], 22G0691-06[Dup]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Nonafluoro-3,6-dioxaheptanoic acid

S075552-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

Lua Warrengton

Sample Description:

Work Order: 22G0691

Project Location: Grafton, VT

Date Received: 7/13/2022

Field Sample #: MW-108

Sampled: 7/11/2022 10:53

Sample ID: 22G0691-01
Sample Matrix: Ground Water

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	3.8	1.8	ng/L	1	riag/Quai	SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoropentanoic acid (PFPeA)	3.1	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorohexanoic acid (PFHxA)	3.0	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
11Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
9Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
N-EtFOSAA	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
N-MeFOSAA	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorotetradecanoic acid (PFTA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorononanesulfonic acid (PFNS)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoropetanesulfonic acid (PFPeS)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluoroheptanoic acid (PFHpA)	2.4	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorooctanoic acid (PFOA)	6.7	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorooctanesulfonic acid (PFOS)	4.7	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:27	BLH

Sample Description:

Work Order: 22G0691

Project Location: Grafton, VT
Date Received: 7/13/2022
Field Sample #: Field Blank

Sampled: 7/11/2022 11:30

Sample ID: 22G0691-02

Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

		L.	cinivolatne Organic Col	iipounus by - i	JC/MS-MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoropentanoic acid (PFPeA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorohexanoic acid (PFHxA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
11Cl-PF3OUdS (F53B Major)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
9Cl-PF3ONS (F53B Minor)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorodecanoic acid (PFDA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorododecanoic acid (PFDoA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
N-EtFOSAA	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
N-MeFOSAA	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorotetradecanoic acid (PFTA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorodecanesulfonic acid (PFDS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorooctanesulfonamide (FOSA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorononanesulfonic acid (PFNS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoropetanesulfonic acid (PFPeS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluoroheptanoic acid (PFHpA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorooctanoic acid (PFOA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH
Perfluorononanoic acid (PFNA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:34	BLH

Work Order: 22G0691

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Grafton, VT Sample Description:

Date Received: 7/13/2022

Field Sample #: Eq Blank

Sampled: 7/11/2022 11:35

Sample ID: 22G0691-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

			Semivolatile Organic Col	mpounds by - 1	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorobutanesulfonic acid (PFBS)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoropentanoic acid (PFPeA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorohexanoic acid (PFHxA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
11Cl-PF3OUdS (F53B Major)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
9Cl-PF3ONS (F53B Minor)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorodecanoic acid (PFDA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorododecanoic acid (PFDoA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
N-EtFOSAA	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
N-MeFOSAA	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorotetradecanoic acid (PFTA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorodecanesulfonic acid (PFDS)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorooctanesulfonamide (FOSA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorononanesulfonic acid (PFNS)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoro-1-butanesulfonamide (FBSA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorohexanesulfonic acid (PFHxS)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoropetanesulfonic acid (PFPeS)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoroundecanoic acid (PFUnA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluoroheptanoic acid (PFHpA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorooctanoic acid (PFOA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorooctanesulfonic acid (PFOS)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH
Perfluorononanoic acid (PFNA)	ND	2.3	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:42	BLH

Sample Description:

Work Order: 22G0691

Project Location: Grafton, VT
Date Received: 7/13/2022
Field Sample #: MW-107

Sampled: 7/11/2022 11:35

Sample ID: 22G0691-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC
--

		50	emivolatile Organic Co	mpounds by - 1	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	13	1.9	ng/L	1	<u> </u>	SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorobutanesulfonic acid (PFBS)	2.9	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoropentanoic acid (PFPeA)	49	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorohexanoic acid (PFHxA)	76	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
11Cl-PF3OUdS (F53B Major)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
9Cl-PF3ONS (F53B Minor)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorodecanoic acid (PFDA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorododecanoic acid (PFDoA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
N-EtFOSAA	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
N-MeFOSAA	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorotetradecanoic acid (PFTA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorodecanesulfonic acid (PFDS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorooctanesulfonamide (FOSA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorononanesulfonic acid (PFNS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorohexanesulfonic acid (PFHxS)	5.9	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoropetanesulfonic acid (PFPeS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluoroheptanoic acid (PFHpA)	7.2	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorooctanoic acid (PFOA)	25	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorooctanesulfonic acid (PFOS)	13	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH
Perfluorononanoic acid (PFNA)	8.7	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/16/22 23:49	BLH

Sample Description:

Work Order: 22G0691

Project Location: Grafton, VT
Date Received: 7/13/2022
Field Sample #: MW-103

Sampled: 7/11/2022 10:25

Sample ID: 22G0691-05
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

Pertition-folumino acid (PFPA) ND 20 ngL 1 SOP-45 PFAS 7,7822 81722 011 BLI	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobatnesatifonic acid (PFBS)	•					riag/Quai			<u>-</u>	<u> </u>
Perfluonopentantic acid (PFPA)	· · ·			_						
Perfluorodecamoi acid (PFIIxA) 2.7 2.0 ngL 1 SOP-44 PFAS 7.822 817/22 0.1 BIL	,			_	-					
No. 1	• • • • • • • • • • • • • • • • • • • •			_						
Per- Par-				_						
Age	· · · · · ·			_						
Manual National Nat				_						
REPROLACY SEZ PRIMOTE CHORMENS RESIDENCE CHORMENS R		ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17//22 0:11	BLH
Perfluorodecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorodecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorodecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorodecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorodecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH N-EHDOSAA ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH N-EHDOSAA ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH N-MEDOSAA ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFTDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFTDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFTDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFTDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFTDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDS) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDS) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDS) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDS) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDS) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH Perfluorotecanoic acid (PFDA) ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH PATHONOIC ACADEMIC ACID ND 20 ng/L 1 SOP-454 PFAS 7/28/2 8/17/22 0:11 BLH PATHONOIC ACID ND 20 ng/L 1		ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorododecanoia caid (PFDoA) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluoro(2-ethoxyethane) sulfonic acid (PFHSS) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotephanesulfonic acid (PFHSS) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotephanesulfonic acid (PFHSS) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotephanesulfonic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotephanesulfonic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotetradecanoic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotetradecanoic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotetradecanoic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH Perfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH PERfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH PERfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 72822 81722 0:11 BLH PERfluorotecanosulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454	8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluoro(2-ethoxyethane)sulfonia acid (PFHS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH (PEEESA)	Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluoroheptanesulfonic acid (PFHpS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH N-EiFOSAA ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluorotetradecanoic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluorotetradecanoic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluorotetradecanoic acid (PFTDA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluorotedecanesulfonic acid (42FTSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluorotetradecanoic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluorotedecanesulfonic acid (42FTSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoroctanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoroctanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoro-1-hexanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoro-1-hexanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoro-1-hexanesulfonic acid (PFNAS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoro-1-hexanesulfonic acid (PFNAS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoro-1-hexanesulfonic acid (PFNAS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoro-1-hexanesulfonic acid (PFNAS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoro-1-hexanesulfonic acid (PFNAS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoro-1-hexanesulfonic acid (PFNAS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0.11 BLH Perfluoro-1-hexanesulfonic acid (PFNAS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/	Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
NEIFOSAA ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH N-MeFOSAA ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorotetradecanoic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorotetradecanoic acid (PFTDA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorotetradecanoic acid (PFTDA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorodecanesulfonic acid (4:2FTSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorodecanesulfonic acid (FPDS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorootensulfonamide (FOSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-thexasulfonamide (FOSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-thexasulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-thexasulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-thexanesulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (FFHXS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (FFHXS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (FFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (FFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (FFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (FFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-6-oxahexanoic acid (FFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/1	(PFEESA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
NMeFOSAA ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluorotetradecanoic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluorotedecanoic acid (PFTDA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluorotedecanoic acid (PFTDA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluorodecanesulfonic acid (4:2FTSA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluorodecanesulfonic acid (PFDS) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluorodecanesulfonic acid (PFDS) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluorononanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-1-batanesulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-1-batanesulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-4-exapentanoic acid (PFMS) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-4-exapentanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-5-exahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-5-exahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-5-exahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-6-exahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-5-exahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-6-exahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoro-6-exahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoropetanesulfonic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoropetanesulfonic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoropetanesulfonic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoropetanesulfonic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH Perfluoropetanesulfonic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 728/2 8/17/2 0:11 BLH PATH PATH PATH PATH	Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorotetradecanoic acid (PFTA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorotetradecanoic acid (PFTrDA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH 4:2 Fluorotelomersulfonic acid (42FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorodecanesulfonic acid (PFDS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorodecanesulfonic acid (PFDS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorocotanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoron-1-bexanesulfonamide (FDSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-bexanesulfonamide (FBSA) ND 2.0	N-EtFOSAA	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorotridecanoic acid (PFTrDA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH 4:2 Fluorotelomersulfonic acid (4:2FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorodecanesulfonic acid (PFDS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroctanesulfonamide (FOSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorononanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorononanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-bexanesulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-bexanesulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxabexanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxabexanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (6:2FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (6:2FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FPENS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FPENS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FPENS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FPENS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FPENS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FPENS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (FPENS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH PERfluoro-3,6-dioxabeptanoic acid (FPENS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH PERfluoropetanesulfonic acid (FPENS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22	N-MeFOSAA	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
42 Fluorotelomersulfonic acid (42FTSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorodecanesulfonic acid (PFDS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanesulfonamide (FOSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanesulfonamide (FDSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoron-1-hexanesulfonamide (FDSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-hexanesulfonamide (FDSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-hexanesulfonamide (FDSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-hexanesulfonamide (FDSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (PFHSS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (62FTSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFDA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Nonafluoro-3,6-dioxaheptanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFUNA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFUNA) SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanes	Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorodecanesulfonic acid (PFDS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanesulfonamide (FOSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoronanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-hexanesulfonamide (FHXSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-butanesulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-butanesulfonic acid (PFHXS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (PFHXS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-6-oxapentanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (6:2FTSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFPeS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH NOnafluoro-3,6-dioxaheptanoic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH NOnafluoro-3,6-dioxaheptanoic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFMA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH PERfluoropetanoic acid (PFMA) ND 2.0 ng	Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorooctanesulfonamide (FOSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorononanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-hexanesulfonamide (FHxSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-hexanesulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-butanesulfonic acid (PFHxS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorobexanesulfonic acid (PFHxS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMBA) ND 2.	4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorononanesulfonic acid (PFNS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-hexanesulfonamide (FHxSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-butanesulfonamide (FHxSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-butanesulfonic acid (PFHxS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (PFMRA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorotelomersulfonic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroteptanesulfonic acid (PFUnA) ND	Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluoro-1-hexanesulfonamide (FHxSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-butanesulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (PFHxS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-6-oxahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (6:2FTSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFPES) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Nonafluoro-3,6-dioxaheptanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Nonafluoro-3,6-dioxaheptanoic acid (PFUpA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFUpA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFUpA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFUpA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH PErfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH PERfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH PERfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH PERfluoroctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22	Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluoro-1-butanesulfonamide (FBSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-1-butanesulfonic acid (PFHxS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxabexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH 6:2 Fluorotelomersulfonic acid (6:2FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFPeS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroundecanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH NDAHOTOPHAN ND 2.0 ng	Perfluorononanesulfonic acid (PFNS)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorohexanesulfonic acid (PFHxS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-4-oxapentanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH 6:2 Fluorotelomersulfonic acid (6:2FTSA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFPeS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroundecanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Nonafluoro-3,6-dioxaheptanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroheptanoic acid (PFDA) ND 2.	Perfluoro-1-hexanesulfonamide (FHxSA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluoro-4-oxapentanoic acid (PFMPA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoro-5-oxahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH 6:2 Fluorotelomersulfonic acid (6:2FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFPeS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroundecanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Nonafluoro-3,6-dioxaheptanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH NFDHA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorobeptanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BL	Perfluoro-1-butanesulfonamide (FBSA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluoro-5-oxahexanoic acid (PFMBA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH 6:2 Fluorotelomersulfonic acid (6:2FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFPeS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroundecanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Nonafluoro-3,6-dioxaheptanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH NFDHA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorobeptanoic acid (PFHpA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanoic acid (PFOA) 2.4 2.0 ng/L	Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
6:2 Fluorotelomersulfonic acid (6:2FTS A) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoropetanesulfonic acid (PFPeS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroundecanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Nonafluoro-3,6-dioxaheptanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH (NFDHA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanoic acid (PFOS) 6.5 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH	Perfluoro-4-oxapentanoic acid (PFMPA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluoropetanesulfonic acid (PFPeS) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluoroundecanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Nonafluoro-3,6-dioxaheptanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH (NFDHA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanoic acid (PFHpA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanosulfonic acid (PFOS) 6.5 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH	Perfluoro-5-oxahexanoic acid (PFMBA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluoroundecanoic acid (PFUnA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Nonafluoro-3,6-dioxaheptanoic acid (NFDHA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH NFDHA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanesulfonic acid (PFOS) 6.5 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH	6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH (NFDHA) Perfluoroheptanoic acid (PFHpA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanesulfonic acid (PFOS) 6.5 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH	Perfluoropetanesulfonic acid (PFPeS)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
(NFDHA) Perfluoroheptanoic acid (PFHpA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanesulfonic acid (PFOS) 6.5 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH	Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorooctanoic acid (PFOA) 2.4 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH Perfluorooctanesulfonic acid (PFOS) 6.5 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH	•	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorooctanesulfonic acid (PFOS) 6.5 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH	Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
, , , , , , , , , , , , , , , , , , ,	Perfluorooctanoic acid (PFOA)	2.4	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
Perfluorononanoic acid (PFNA) ND 2.0 ng/L 1 SOP-454 PFAS 7/28/22 8/17/22 0:11 BLH	Perfluorooctanesulfonic acid (PFOS)	6.5	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH
	Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:11	BLH

Project Location: Grafton, VT

Sample Description:

Work Order: 22G0691

Date Received: 7/13/2022 Field Sample #: Dup

Sampled: 7/11/2022 00:00

Sample ID: 22G0691-06 Sample Matrix: Ground Water

Semivolatile	Organic	Compounds b	v - LC/MS-MS

A. 1.	D. 14	DI	WT *4	D21- 41	El/0 1	M. a - 1	Date	Date/Time	A 3
Analyte Perfluorobutanoic acid (PFBA)	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA) Perfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
, ,	1.9	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoropentanoic acid (PFPeA)	2.3	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorohexanoic acid (PFHxA)	2.7	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
11Cl-PF3OUdS (F53B Major)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
9Cl-PF3ONS (F53B Minor)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorodecanoic acid (PFDA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorododecanoic acid (PFDoA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
N-EtFOSAA	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
N-MeFOSAA	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorotetradecanoic acid (PFTA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorodecanesulfonic acid (PFDS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorooctanesulfonamide (FOSA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorononanesulfonic acid (PFNS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoropetanesulfonic acid (PFPeS)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluoroheptanoic acid (PFHpA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorooctanoic acid (PFOA)	2.6	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorooctanesulfonic acid (PFOS)	5.8	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH
Perfluorononanoic acid (PFNA)	ND	1.9	ng/L	1		SOP-454 PFAS	7/28/22	8/17/22 0:18	BLH

Sample Extraction Data

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22G0691-01 [MW-108]	B313896	276	1.00	07/28/22
22G0691-02 [Field Blank]	B313896	262	1.00	07/28/22
22G0691-03 [Eq Blank]	B313896	222	1.00	07/28/22
22G0691-04 [MW-107]	B313896	258	1.00	07/28/22
22G0691-05 [MW-103]	B313896	253	1.00	07/28/22
22G0691-06 [Dup]	B313896	260	1.00	07/28/22

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B313896 - SOP 454-PFAAS										
Blank (B313896-BLK1)				Prepared: 07	7/28/22 Anal	yzed: 08/16/2	22			
Perfluorobutanoic acid (PFBA)	ND	1.8	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
erfluorohexanoic acid (PFHxA)	ND	1.8	ng/L							
1Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L							
,8-dioxa-3H-perfluorononanoic acid ADONA)	ND	1.8	ng/L							
lexafluoropropylene oxide dimer acid HFPO-DA)	ND	1.8	ng/L							
:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L							
erfluorodecanoic acid (PFDA)	ND	1.8	ng/L							
erfluorododecanoic acid (PFDoA)	ND	1.8	ng/L							
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	1.8	ng/L							
erfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L							
I-EtFOSAA	ND	1.8	ng/L							
I-MeFOSAA	ND	1.8	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	1.8	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L							
erfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L							
erfluorononanesulfonic acid (PFNS)	ND	1.8	ng/L							
erfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	ng/L							
erfluoro-1-butanesulfonamide (FBSA)	ND	1.8	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L							
erfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
erfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	ng/L							
erfluoropetanesulfonic acid (PFPeS)	ND	1.8	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
Ionafluoro-3,6-dioxaheptanoic acid	ND	1.8	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
erfluorooctanoic acid (PFOA)	ND	1.8	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L							
erfluorononanoic acid (PFNA)	ND	1.8	ng/L							
CS (B313896-BS1)		1.0	σ.		7/28/22 Anal	•				
erfluorobutanoic acid (PFBA)	8.81	1.8	ng/L	9.05		97.4	73-129			
erfluorobutanesulfonic acid (PFBS)	7.47	1.8	ng/L	8.00		93.3	72-130			
erfluoropentanoic acid (PFPeA)	8.77	1.8	ng/L	9.05		97.0	72-129			
erfluorohexanoic acid (PFHxA)	8.58	1.8	ng/L	9.05		94.9	72-129			
1Cl-PF3OUdS (F53B Major)	7.23	1.8	ng/L	8.52		84.8	50-150			
Cl-PF3ONS (F53B Minor)	8.29	1.8	ng/L	8.43		98.4	50-150			
8-dioxa-3H-perfluorononanoic acid ADONA)	7.79	1.8	ng/L	8.52		91.4	50-150			
exafluoropropylene oxide dimer acid HFPO-DA)	7.92	1.8	ng/L	9.05		87.5	50-150			
2 Fluorotelomersulfonic acid (8:2FTS A)	7.77	1.8	ng/L	8.68		89.4	67-138			
erfluorodecanoic acid (PFDA)	8.75	1.8	ng/L	9.05		96.7	71-129			
Perfluorododecanoic acid (PFDoA)	8.97	1.8	ng/L	9.05		99.2	72-134			
erfluoro(2-ethoxyethane)sulfonic acid	6.88	1.8	ng/L	8.05		85.5	50-150			

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B313896 - SOP 454-PFAAS										
.CS (B313896-BS1)				Prepared: 07	7/28/22 Analy	yzed: 08/16/2	.2			
erfluoroheptanesulfonic acid (PFHpS)	8.08	1.8	ng/L	8.64		93.5	69-134			
I-EtFOSAA	11.6	1.8	ng/L	9.05		128	61-135			
I-MeFOSAA	11.1	1.8	ng/L	9.05		123	65-136			
erfluorotetradecanoic acid (PFTA)	8.70	1.8	ng/L	9.05		96.2	71-132			
erfluorotridecanoic acid (PFTrDA)	9.97	1.8	ng/L	9.05		110	65-144			
2 Fluorotelomersulfonic acid (4:2FTS A)	7.86	1.8	ng/L	8.46		93.0	63-143			
erfluorodecanesulfonic acid (PFDS)	7.32	1.8	ng/L	8.73		83.8	53-142			
erfluorooctanesulfonamide (FOSA)	8.38	1.8	ng/L	9.05		92.7	67-137			
erfluorononanesulfonic acid (PFNS)	8.27	1.8	ng/L	8.68		95.3	69-127			
erfluoro-1-hexanesulfonamide (FHxSA)	9.35	1.8	ng/L	9.05		103	50-150			
erfluoro-1-butanesulfonamide (FBSA)	7.78	1.8	ng/L	9.05		86.0	50-150			
erfluorohexanesulfonic acid (PFHxS)	7.77	1.8	ng/L	8.28		93.8	68-131			
erfluoro-4-oxapentanoic acid (PFMPA)	7.54	1.8	ng/L	9.05		83.4	50-150			
erfluoro-5-oxahexanoic acid (PFMBA)	7.99	1.8	ng/L	9.05		88.3	50-150			
2 Fluorotelomersulfonic acid (6:2FTS A)	8.23	1.8	ng/L	8.59		95.7	64-140			
erfluoropetanesulfonic acid (PFPeS)	8.17	1.8	ng/L	8.50		96.1	71-127			
erfluoroundecanoic acid (PFUnA)	9.41	1.8	ng/L	9.05		104	69-133			
onafluoro-3,6-dioxaheptanoic acid IFDHA)	6.24	1.8	ng/L	9.05		69.0	50-150			
erfluoroheptanoic acid (PFHpA)	8.77	1.8	ng/L	9.05		97.0	72-130			
erfluorooctanoic acid (PFOA)	8.75	1.8	ng/L	9.05		96.8	71-133			
erfluorooctanesulfonic acid (PFOS)	7.81	1.8	ng/L	8.37		93.4	65-140			
erfluorononanoic acid (PFNA)	9.06	1.8	ng/L	9.05		100	69-130			
CS Dun (D212906 DCD1)				Dranarad 07	1/28/22 1 1-	uzad: 00/12/2	12			
CS Dup (B313896-BSD1)		1.0	/*	•	7/28/22 Analy	*		6.15	2.5	
erfluorobutanoic acid (PFBA)	9.66	1.8	ng/L	9.15		106	73-129	9.13	30	
erfluorobutanesulfonic acid (PFBS)	8.19	1.8	ng/L	8.09		101	72-130	9.30	30	
erfluoropentanoic acid (PFPeA)	9.52	1.8	ng/L	9.15		104	72-129	8.21	30	
erfluorohexanoic acid (PFHxA)	9.28	1.8	ng/L	9.15		101	72-129	7.78	30	
CI-PF3OUdS (F53B Major)	7.98	1.8	ng/L	8.62		92.6	50-150	9.93	30	
Cl-PF3ONS (F53B Minor)	7.90	1.8	ng/L	8.52		92.7	50-150	4.87	30	
8-dioxa-3H-perfluorononanoic acid	8.42	1.8	ng/L	8.62		97.7	50-150	7.75	30	
ADONA) exafluoropropylene oxide dimer acid IFPO-DA)	9.26	1.8	ng/L	9.15		101	50-150	15.7	30	
2 Fluorotelomersulfonic acid (8:2FTS A)	9.89	1.8	ng/L	8.78		113	67-138	24.1	30	
erfluorodecanoic acid (PFDA)	8.48	1.8	ng/L	9.15		92.8	71-129	3.06	30	
erfluorododecanoic acid (PFDoA)	10.9	1.8	ng/L	9.15		119	72-134	19.6	30	
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	7.52	1.8	ng/L	8.14		92.4	50-150	8.83	30	
erfluoroheptanesulfonic acid (PFHpS)	8.88	1.8	ng/L	8.73		102	69-134	9.40	30	
-EtFOSAA	11.7	1.8	ng/L	9.15		128	61-135	1.17	30	
-MeFOSAA	13.3	1.8	ng/L	9.15		146 *	65-136	18.0	30	L-01
erfluorotetradecanoic acid (PFTA)	9.89	1.8	ng/L	9.15		108	71-132	12.8	30	-
erfluorotridecanoic acid (PFTrDA)	10.2	1.8	ng/L	9.15		112	65-144	2.61	30	
. ,		1.8	ng/L	8.55		101	63-143	9.51	30	
2 Fluorotelomersulfonic acid (4:2FTS A)	רחוא			8.83		86.5	53-142	4.24	30	
· · · · · · · · · · · · · · · · · · ·	8.65 7.63	1.8	ng/L							
erfluorodecanesulfonic acid (PFDS)	7.63	1.8 1.8	ng/L ng/L	9.15		106	67-137	14.8	30	
erfluorodecanesulfonic acid (PFDS) erfluorooctanesulfonamide (FOSA)	7.63 9.72	1.8	ng/L	9.15 8.78		106 111	67-137 69-127	14.8 16.0	30 30	
erfluorodecanesulfonic acid (PFDS) erfluorooctanesulfonamide (FOSA) erfluorononanesulfonic acid (PFNS)	7.63 9.72 9.71	1.8 1.8	ng/L ng/L	8.78		111	69-127	16.0	30	
erfluorodecanesulfonic acid (PFDS) erfluorooctanesulfonamide (FOSA) erfluorononanesulfonic acid (PFNS) erfluoro-1-hexanesulfonamide (FHxSA)	7.63 9.72 9.71 9.36	1.8 1.8 1.8	ng/L ng/L ng/L	8.78 9.15		111 102	69-127 50-150	16.0 0.171	30 30	
erfluorodecanesulfonic acid (PFDS) erfluorooctanesulfonic acid (PFNS) erfluorononanesulfonic acid (PFNS) erfluoro-1-hexanesulfonamide (FHxSA) erfluoro-1-butanesulfonamide (FBSA)	7.63 9.72 9.71 9.36 8.50	1.8 1.8 1.8	ng/L ng/L ng/L ng/L	8.78 9.15 9.15		111 102 92.9	69-127 50-150 50-150	16.0 0.171 8.78	30 30 30	
erfluorodecanesulfonic acid (PFDS) erfluorooctanesulfonamide (FOSA) erfluorononanesulfonic acid (PFNS) erfluoro-1-hexanesulfonamide (FHxSA) erfluoro-1-butanesulfonamide (FBSA) erfluorohexanesulfonic acid (PFHxS)	7.63 9.72 9.71 9.36 8.50 8.48	1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L	8.78 9.15 9.15 8.37		111 102 92.9 101	69-127 50-150 50-150 68-131	16.0 0.171 8.78 8.75	30 30 30 30	
2 Fluorotelomersulfonic acid (4:2FTS A) erfluorodecanesulfonic acid (PFDS) erfluorooctanesulfonamide (FOSA) erfluorononanesulfonic acid (PFNS) erfluoro-1-hexanesulfonamide (FHxSA) erfluoro-1-butanesulfonamide (FBSA) erfluoro-4-oxapentanoic acid (PFHxS) erfluoro-4-oxapentanoic acid (PFMPA) erfluoro-5-oxahexanoic acid (PFMBA)	7.63 9.72 9.71 9.36 8.50	1.8 1.8 1.8	ng/L ng/L ng/L ng/L	8.78 9.15 9.15		111 102 92.9	69-127 50-150 50-150	16.0 0.171 8.78	30 30 30	

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B313896 - SOP 454-PFAAS										
LCS Dup (B313896-BSD1)				Prepared: 07	7/28/22 Anal	yzed: 08/16/2	22			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	9.97	1.8	ng/L	8.69		115	64-140	19.1	30	
Perfluoropetanesulfonic acid (PFPeS)	8.62	1.8	ng/L	8.60		100	71-127	5.31	30	
Perfluoroundecanoic acid (PFUnA)	10.1	1.8	ng/L	9.15		110	69-133	7.08	30	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	6.82	1.8	ng/L	9.15		74.6	50-150	8.90	30	
Perfluoroheptanoic acid (PFHpA)	8.59	1.8	ng/L	9.15		93.9	72-130	2.10	30	
Perfluorooctanoic acid (PFOA)	9.30	1.8	ng/L	9.15		102	71-133	6.11	30	
Perfluorooctanesulfonic acid (PFOS)	8.66	1.8	ng/L	8.46		102	65-140	10.3	30	
Perfluorononanoic acid (PFNA)	8.10	1.8	ng/L	9.15		88.5	69-130	11.2	30	

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-01	Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
S-29	Extracted Internal Standard is outside of control limits.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
MW-108 (22G0691-01)			Lab File ID: 22G00	591-01.d		Analyzed: 08/10	6/22 23:27		
M8FOSA	132448	3.988583	243,803.00	3.988567	54	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	131317.9	2.463967	145,198.00	2.472183	90	50 - 150	-0.0082	+/-0.50	
M2PFTA	635265.6	4.329683	950,044.00	4.3378	67	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	115572	3.8028	106,836.00	3.8028	108	50 - 150	0.0000	+/-0.50	
MPFBA	253557.6	1.066783	412,389.00	1.066783	61	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	141462.7	2.806567	140,601.00	2.81475	101	50 - 150	-0.0082	+/-0.50	
M6PFDA	499955.5	3.803317	575,914.00	3.803317	87	50 - 150	0.0000	+/-0.50	
M3PFBS	112348.5	1.8701	121,056.00	1.878383	93	50 - 150	-0.0083	+/-0.50	
M7PFUnA	583873.8	3.94605	785,626.00	3.954033	74	50 - 150	-0.0080	+/-0.50	
M2-6:2FTS	71782.07	3.4373	78,284.00	3.445283	92	50 - 150	-0.0080	+/-0.50	
M5PFPeA	324253.9	1.698283	408,471.00	1.706567	79	50 - 150	-0.0083	+/-0.50	
M5PFHxA	647973.4	2.5477	765,075.00	2.555917	85	50 - 150	-0.0082	+/-0.50	
M3PFHxS	95123.84	3.201883	105,186.00	3.201883	90	50 - 150	0.0000	+/-0.50	
M4PFHpA	752897.6	3.170783	889,344.00	3.170783	85	50 - 150	0.0000	+/-0.50	
M8PFOA	639736.4	3.453817	713,304.00	3.453817	90	50 - 150	0.0000	+/-0.50	
M8PFOS	79924.29	3.644167	88,935.00	3.644167	90	50 - 150	0.0000	+/-0.50	
M9PFNA	481720.6	3.6452	507,357.00	3.6452	95	50 - 150	0.0000	+/-0.50	
MPFDoA	640850.5	4.08865	880,954.00	4.08865	73	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	144713.6	3.953517	191,227.00	3.9535	76	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	161304.6	3.88175	196,798.00	3.88175	82	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Field Blank (22G0691-02)			Lab File ID: 22G00	591-02.d		Analyzed: 08/1	6/22 23:34		
M8FOSA	194652.2	3.988583	243,803.00	3.988567	80	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	76967.79	2.472183	145,198.00	2.472183	53	50 - 150	0.0000	+/-0.50	
M2PFTA	694434	4.3297	950,044.00	4.3378	73	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	82318.32	3.802817	106,836.00	3.8028	77	50 - 150	0.0000	+/-0.50	
MPFBA	370119.1	1.066783	412,389.00	1.066783	90	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	163468.6	2.814767	140,601.00	2.81475	116	50 - 150	0.0000	+/-0.50	
M6PFDA	452950.2	3.803333	575,914.00	3.803317	79	50 - 150	0.0000	+/-0.50	
M3PFBS	105860.5	1.8784	121,056.00	1.878383	87	50 - 150	0.0000	+/-0.50	
M7PFUnA	589248.8	3.94605	785,626.00	3.954033	75	50 - 150	-0.0080	+/-0.50	
M2-6:2FTS	44295.77	3.4453	78,284.00	3.445283	57	50 - 150	0.0000	+/-0.50	
M5PFPeA	345280.6	1.706567	408,471.00	1.706567	85	50 - 150	0.0000	+/-0.50	
M5PFHxA	642673.6	2.555917	765,075.00	2.555917	84	50 - 150	0.0000	+/-0.50	
M3PFHxS	88067.68	3.2019	105,186.00	3.201883	84	50 - 150	0.0000	+/-0.50	
M4PFHpA	702050.8	3.170783	889,344.00	3.170783	79	50 - 150	0.0000	+/-0.50	
M8PFOA	588537.1	3.453833	713,304.00	3.453817	83	50 - 150	0.0000	+/-0.50	
M8PFOS	70666.7	3.644183	88,935.00	3.644167	79	50 - 150	0.0000	+/-0.50	
M9PFNA	439167.3	3.645217	507,357.00	3.6452	87	50 - 150	0.0000	+/-0.50	
MPFDoA	619793.8	4.088666	880,954.00	4.08865	70	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	122093.2	3.953517	191,227.00	3.9535	64	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	153466.9	3.881767	196,798.00	3.88175	78	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Eq Blank (22G0691-03)			Lab File ID: 22G00	Analyzed: 08/16/22 23:42					
M8FOSA	205245.5	3.988583	243,803.00	3.988567	84	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	104699.7	2.472183	145,198.00	2.472183	72	50 - 150	0.0000	+/-0.50	
M2PFTA	667123.8	4.3297	950,044.00	4.3378	70	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	102528.5	3.8028	106,836.00	3.8028	96	50 - 150	0.0000	+/-0.50	
MPFBA	402736.7	1.066783	412,389.00	1.066783	98	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	124459.7	2.81475	140,601.00	2.81475	89	50 - 150	0.0000	+/-0.50	
M6PFDA	527565.9	3.803333	575,914.00	3.803317	92	50 - 150	0.0000	+/-0.50	
M3PFBS	116688.6	1.878383	121,056.00	1.878383	96	50 - 150	0.0000	+/-0.50	
M7PFUnA	735957.6	3.94605	785,626.00	3.954033	94	50 - 150	-0.0080	+/-0.50	
M2-6:2FTS	64564.75	3.4373	78,284.00	3.445283	82	50 - 150	-0.0080	+/-0.50	
M5PFPeA	376683	1.706567	408,471.00	1.706567	92	50 - 150	0.0000	+/-0.50	
M5PFHxA	691445.9	2.555917	765,075.00	2.555917	90	50 - 150	0.0000	+/-0.50	
M3PFHxS	96030.66	3.21025	105,186.00	3.201883	91	50 - 150	0.0084	+/-0.50	
M4PFHpA	790829.6	3.170783	889,344.00	3.170783	89	50 - 150	0.0000	+/-0.50	
M8PFOA	683332.4	3.453817	713,304.00	3.453817	96	50 - 150	0.0000	+/-0.50	
M8PFOS	84211.94	3.644167	88,935.00	3.644167	95	50 - 150	0.0000	+/-0.50	
M9PFNA	464419.5	3.6452	507,357.00	3.6452	92	50 - 150	0.0000	+/-0.50	
MPFDoA	662918.4	4.088666	880,954.00	4.08865	75	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	152707.3	3.953517	191,227.00	3.9535	80	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	175708.4	3.873783	196,798.00	3.88175	89	50 - 150	-0.0080	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
MW-107 (22G0691-04)			Lab File ID: 22G0691-04.d			Analyzed: 08/16/22 23:49				
M8FOSA	100863.9	3.988567	243,803.00	3.988567	41	50 - 150	0.0000	+/-0.50	*	
M2-4:2FTS	99024.64	2.472183	145,198.00	2.472183	68	50 - 150	0.0000	+/-0.50		
M2PFTA	367918.5	4.329683	950,044.00	4.3378	39	50 - 150	-0.0081	+/-0.50	*	
M2-8:2FTS	97532.22	3.8028	106,836.00	3.8028	91	50 - 150	0.0000	+/-0.50		
MPFBA	285024.9	1.066783	412,389.00	1.066783	69	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	106810.1	2.81475	140,601.00	2.81475	76	50 - 150	0.0000	+/-0.50		
M6PFDA	526468.5	3.803317	575,914.00	3.803317	91	50 - 150	0.0000	+/-0.50		
M3PFBS	114819.8	1.878383	121,056.00	1.878383	95	50 - 150	0.0000	+/-0.50		
M7PFUnA	603124.2	3.946033	785,626.00	3.954033	77	50 - 150	-0.0080	+/-0.50		
M2-6:2FTS	54814.93	3.4373	78,284.00	3.445283	70	50 - 150	-0.0080	+/-0.50		
M5PFPeA	360696.7	1.706567	408,471.00	1.706567	88	50 - 150	0.0000	+/-0.50		
M5PFHxA	685667.2	2.555917	765,075.00	2.555917	90	50 - 150	0.0000	+/-0.50		
M3PFHxS	91522.48	3.21025	105,186.00	3.201883	87	50 - 150	0.0084	+/-0.50		
M4PFHpA	798518.9	3.170783	889,344.00	3.170783	90	50 - 150	0.0000	+/-0.50		
M8PFOA	634114.2	3.453817	713,304.00	3.453817	89	50 - 150	0.0000	+/-0.50		
M8PFOS	89449.6	3.644167	88,935.00	3.644167	101	50 - 150	0.0000	+/-0.50		
M9PFNA	476939.9	3.6452	507,357.00	3.6452	94	50 - 150	0.0000	+/-0.50		
MPFDoA	571273.1	4.08865	880,954.00	4.08865	65	50 - 150	0.0000	+/-0.50		
d5-NEtFOSAA	142433.1	3.9535	191,227.00	3.9535	74	50 - 150	0.0000	+/-0.50		
d3-NMeFOSAA	170136.3	3.88175	196,798.00	3.88175	86	50 - 150	0.0000	+/-0.50		

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
MW-103 (22G0691-05)			Lab File ID: 22G0691-05.d			Analyzed: 08/17/22 00:11				
M8FOSA	36555.03	3.988583	243,803.00	3.988583	15	50 - 150	0.0000	+/-0.50	*	
M2-4:2FTS	129923.7	2.472183	145,198.00	2.472183	89	50 - 150	0.0000	+/-0.50		
M2PFTA	473833	4.337817	950,044.00	4.337817	50	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	101473.5	3.8028	106,836.00	3.8028	95	50 - 150	0.0000	+/-0.50		
MPFBA	261661.8	1.066783	412,389.00	1.066783	63	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	102089.4	2.81475	140,601.00	2.814767	73	50 - 150	0.0000	+/-0.50		
M6PFDA	457210.5	3.803317	575,914.00	3.803317	79	50 - 150	0.0000	+/-0.50		
M3PFBS	104716.2	1.878383	121,056.00	1.878383	87	50 - 150	0.0000	+/-0.50		
M7PFUnA	551192.5	3.94605	785,626.00	3.954033	70	50 - 150	-0.0080	+/-0.50		
M2-6:2FTS	92228.67	3.4373	78,284.00	3.445283	118	50 - 150	-0.0080	+/-0.50		
M5PFPeA	329729.4	1.706567	408,471.00	1.706567	81	50 - 150	0.0000	+/-0.50		
M5PFHxA	620323.2	2.555917	765,075.00	2.555917	81	50 - 150	0.0000	+/-0.50		
M3PFHxS	84501.99	3.201883	105,186.00	3.2019	80	50 - 150	0.0000	+/-0.50		
M4PFHpA	713273.6	3.170783	889,344.00	3.170783	80	50 - 150	0.0000	+/-0.50		
M8PFOA	605321.2	3.453817	713,304.00	3.453817	85	50 - 150	0.0000	+/-0.50		
M8PFOS	71700.75	3.644183	88,935.00	3.644183	81	50 - 150	0.0000	+/-0.50		
M9PFNA	454111.7	3.645217	507,357.00	3.645217	90	50 - 150	0.0000	+/-0.50		
MPFDoA	593709.2	4.088666	880,954.00	4.08865	67	50 - 150	0.0000	+/-0.50		
d5-NEtFOSAA	148666.5	3.953517	191,227.00	3.953517	78	50 - 150	0.0000	+/-0.50		
d3-NMeFOSAA	177338.7	3.873783	196,798.00	3.881767	90	50 - 150	-0.0080	+/-0.50		

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
Dup (22G0691-06)			Lab File ID: 22G0691-06.d			Analyzed: 08/17/22 00:18				
M8FOSA	62994.01	3.988567	243,803.00	3.988583	26	50 - 150	0.0000	+/-0.50	*	
M2-4:2FTS	136043.2	2.472183	145,198.00	2.472183	94	50 - 150	0.0000	+/-0.50		
M2PFTA	138570.2	4.329683	950,044.00	4.337817	15	50 - 150	-0.0081	+/-0.50	*	
M2-8:2FTS	114709.6	3.8028	106,836.00	3.8028	107	50 - 150	0.0000	+/-0.50		
MPFBA	278985.9	1.066783	412,389.00	1.066783	68	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	97340.13	2.81475	140,601.00	2.814767	69	50 - 150	0.0000	+/-0.50		
M6PFDA	464980.5	3.803317	575,914.00	3.803317	81	50 - 150	0.0000	+/-0.50		
M3PFBS	111748.1	1.878383	121,056.00	1.878383	92	50 - 150	0.0000	+/-0.50		
M7PFUnA	622075.1	3.946033	785,626.00	3.954033	79	50 - 150	-0.0080	+/-0.50		
M2-6:2FTS	90082.96	3.4373	78,284.00	3.445283	115	50 - 150	-0.0080	+/-0.50		
M5PFPeA	357752.1	1.706567	408,471.00	1.706567	88	50 - 150	0.0000	+/-0.50		
M5PFHxA	682718.7	2.555917	765,075.00	2.555917	89	50 - 150	0.0000	+/-0.50		
M3PFHxS	94633.94	3.201883	105,186.00	3.2019	90	50 - 150	0.0000	+/-0.50		
M4PFHpA	777554.1	3.170783	889,344.00	3.170783	87	50 - 150	0.0000	+/-0.50		
M8PFOA	651914.1	3.453817	713,304.00	3.453817	91	50 - 150	0.0000	+/-0.50		
M8PFOS	78729.02	3.644167	88,935.00	3.644183	89	50 - 150	0.0000	+/-0.50		
M9PFNA	482034.4	3.6452	507,357.00	3.645217	95	50 - 150	0.0000	+/-0.50		
MPFDoA	537201.6	4.08865	880,954.00	4.08865	61	50 - 150	0.0000	+/-0.50		
d5-NEtFOSAA	160528.2	3.9535	191,227.00	3.953517	84	50 - 150	0.0000	+/-0.50		
d3-NMeFOSAA	202642	3.88175	196,798.00	3.881767	103	50 - 150	0.0000	+/-0.50		

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B313896-BLK1)			Lab File ID: B313896-BLK1.d			Analyzed: 08/16/22 22:37			
M8FOSA	195265.4	3.9886	243,803.00	3.988567	80	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	131614.9	2.472183	145,198.00	2.472183	91	50 - 150	0.0000	+/-0.50	
M2PFTA	802875.6	4.329717	950,044.00	4.3378	85	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	117224.2	3.8028	106,836.00	3.8028	110	50 - 150	0.0000	+/-0.50	
MPFBA	386676.7	1.066783	412,389.00	1.066783	94	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	148248.7	2.81475	140,601.00	2.81475	105	50 - 150	0.0000	+/-0.50	
M6PFDA	574297.7	3.803333	575,914.00	3.803317	100	50 - 150	0.0000	+/-0.50	
M3PFBS	117817.7	1.878383	121,056.00	1.878383	97	50 - 150	0.0000	+/-0.50	
M7PFUnA	709031.7	3.95405	785,626.00	3.954033	90	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	65851.5	3.4453	78,284.00	3.445283	84	50 - 150	0.0000	+/-0.50	
M5PFPeA	388348.5	1.706567	408,471.00	1.706567	95	50 - 150	0.0000	+/-0.50	
M5PFHxA	725941.4	2.555917	765,075.00	2.555917	95	50 - 150	0.0000	+/-0.50	
M3PFHxS	99184.59	3.210267	105,186.00	3.201883	94	50 - 150	0.0084	+/-0.50	
M4PFHpA	835684.4	3.170783	889,344.00	3.170783	94	50 - 150	0.0000	+/-0.50	
M8PFOA	665612.5	3.453833	713,304.00	3.453817	93	50 - 150	0.0000	+/-0.50	
M8PFOS	92172.16	3.644183	88,935.00	3.644167	104	50 - 150	0.0000	+/-0.50	
M9PFNA	524487.5	3.645217	507,357.00	3.6452	103	50 - 150	0.0000	+/-0.50	
MPFDoA	697856.1	4.088683	880,954.00	4.08865	79	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	170233.9	3.953533	191,227.00	3.9535	89	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	194519	3.881767	196,798.00	3.88175	99	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
LCS (B313896-BS1)			Lab File ID: B313896-BS1.d			Analyzed: 08/16/22 22:22				
M8FOSA	197560.5	3.988583	243,803.00	3.988567	81	50 - 150	0.0000	+/-0.50		
M2-4:2FTS	125389	2.472183	145,198.00	2.472183	86	50 - 150	0.0000	+/-0.50		
M2PFTA	686002.6	4.3297	950,044.00	4.3378	72	50 - 150	-0.0081	+/-0.50		
M2-8:2FTS	108745	3.8028	106,836.00	3.8028	102	50 - 150	0.0000	+/-0.50		
MPFBA	361453.1	1.066783	412,389.00	1.066783	88	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	119064.9	2.81475	140,601.00	2.81475	85	50 - 150	0.0000	+/-0.50		
M6PFDA	495614.3	3.803333	575,914.00	3.803317	86	50 - 150	0.0000	+/-0.50		
M3PFBS	108898.2	1.878383	121,056.00	1.878383	90	50 - 150	0.0000	+/-0.50		
M7PFUnA	571449.4	3.94605	785,626.00	3.954033	73	50 - 150	-0.0080	+/-0.50		
M2-6:2FTS	71821.48	3.445283	78,284.00	3.445283	92	50 - 150	0.0000	+/-0.50		
M5PFPeA	358932	1.706567	408,471.00	1.706567	88	50 - 150	0.0000	+/-0.50		
M5PFHxA	675129.9	2.555917	765,075.00	2.555917	88	50 - 150	0.0000	+/-0.50		
M3PFHxS	88581.51	3.21025	105,186.00	3.201883	84	50 - 150	0.0084	+/-0.50		
M4PFHpA	756164.9	3.170783	889,344.00	3.170783	85	50 - 150	0.0000	+/-0.50		
M8PFOA	636595.4	3.453817	713,304.00	3.453817	89	50 - 150	0.0000	+/-0.50		
M8PFOS	74198.98	3.644183	88,935.00	3.644167	83	50 - 150	0.0000	+/-0.50		
M9PFNA	434066.4	3.645217	507,357.00	3.6452	86	50 - 150	0.0000	+/-0.50		
MPFDoA	615778	4.088666	880,954.00	4.08865	70	50 - 150	0.0000	+/-0.50		
d5-NEtFOSAA	136886.2	3.953517	191,227.00	3.9535	72	50 - 150	0.0000	+/-0.50		
d3-NMeFOSAA	178833.3	3.881767	196,798.00	3.88175	91	50 - 150	0.0000	+/-0.50		

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS Dup (B313896-BSD1)			Lab File ID: B313896-BSD1.d			Analyzed: 08/16/22 22:30			
M8FOSA	177798.9	3.988567	243,803.00	3.988567	73	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	115702.1	2.472183	145,198.00	2.472183	80	50 - 150	0.0000	+/-0.50	
M2PFTA	617751.6	4.329683	950,044.00	4.3378	65	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	94154.65	3.8028	106,836.00	3.8028	88	50 - 150	0.0000	+/-0.50	
MPFBA	327675.2	1.066783	412,389.00	1.066783	79	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	107721	2.81475	140,601.00	2.81475	77	50 - 150	0.0000	+/-0.50	
M6PFDA	455139.6	3.803317	575,914.00	3.803317	79	50 - 150	0.0000	+/-0.50	
M3PFBS	98247.29	1.878383	121,056.00	1.878383	81	50 - 150	0.0000	+/-0.50	
M7PFUnA	521276.3	3.946033	785,626.00	3.954033	66	50 - 150	-0.0080	+/-0.50	
M2-6:2FTS	61076.92	3.445283	78,284.00	3.445283	78	50 - 150	0.0000	+/-0.50	
M5PFPeA	328930.9	1.706567	408,471.00	1.706567	81	50 - 150	0.0000	+/-0.50	
M5PFHxA	616843.9	2.555917	765,075.00	2.555917	81	50 - 150	0.0000	+/-0.50	
M3PFHxS	81850.69	3.21025	105,186.00	3.201883	78	50 - 150	0.0084	+/-0.50	
M4PFHpA	713593.1	3.170783	889,344.00	3.170783	80	50 - 150	0.0000	+/-0.50	
M8PFOA	555223.8	3.453817	713,304.00	3.453817	78	50 - 150	0.0000	+/-0.50	
M8PFOS	70716.59	3.644183	88,935.00	3.644167	80	50 - 150	0.0000	+/-0.50	
M9PFNA	440387.6	3.645217	507,357.00	3.6452	87	50 - 150	0.0000	+/-0.50	
MPFDoA	527667.5	4.08865	880,954.00	4.08865	60	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	131047.4	3.953517	191,227.00	3.9535	69	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	144306.2	3.88175	196,798.00	3.88175	73	50 - 150	0.0000	+/-0.50	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SOP-454 PFAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA	NH-P
N-MeFOSAA	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO 17025:2017	100033	03/1/2024
MA	Massachusetts DEP	M-MA100	06/30/2023
CT	Connecticut Department of Public Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2023
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2023
RI	Rhode Island Department of Health	LAO00373	12/30/2022
NC	North Carolina Div. of Water Quality	652	12/31/2022
NJ	New Jersey DEP	MA007 NELAP	06/30/2023
FL	Florida Department of Health	E871027 NELAP	06/30/2023
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2023
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2023
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2022
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2022
NC-DW	North Carolina Department of Health and Human Services	25703	07/31/2023
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2023
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2022

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 www.pacelabs.com

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	Atlas	>							
Receiv		Mes		Date	113/0	72	Time	1645	
How were th	•	In Cooler		No Cooler		On Ice		No Ice	
receiv	ed?	Direct From	Sample			Ambient		Melted Ice	
Were samp	oles within	Within	•	**************************************	By Gun #	3	Actual Ter		**************************************
Tempur	ature?	2-6°C			_By Blank #		Actual Ter	mp -	***************************************
	Custody Sea		Na			mples Tampe	ered with?		
	COC Relind				in Agree With	n Samples?	1		
		eaking/loose cap	on any sa	•	<u> </u>	···			
Is COC in in	•			-		ed within hold		T	
Did COC in		Client?		Analysis?	_T	Sampler		T	
pertinent Inf				ID's?	<u> </u>	Collection Da	ates/Times?	?	
		s filled out and leg	gible?		* * * * * * * * * * * * * * * * * * * *				******
	here Lab to	Filters?	<u>r</u>	* * * * * * * * * * * * * * * * * * * *	_	s notified?			
Are there F			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Who was					
Are there Sh				Who was		1.14.			
•		vithin holding time				e enough Vo	olume?	<u> </u>	
		ice where applica	ible?	<u>ala</u>	_MS/MSD? _	F.			
•		ainers Used?		PROFILE TO A STATE OF THE STATE		nples require	H		
Were trip bla		ε lave the proper p	<u></u> γ	1 - Acid	On COC? _	<u> </u>	Base		
Vials		To take a latinar internal Marin or America Personal Property America	# //	∖⊘ Acid		<u>u</u>	Dase		
Unp-	STATES N	1 Liter Amb.	*	1 Liter F	Diactic		16	oz Amb.	r
HCL-		500 mL Amb.		500 mL				Amb/Clear	
Meoh-	***************************************	250 mL Amb.		250 mL		เอ		Amb/Clear	
Bisulfate-	AND 100 100 100 100 100 100 100 100 100 10	Col./Bacteria		Flash				Amb/Clear	
DI-		Other Plastic		Other (·			Encore Encore	
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate	i	Ziplo			-		
				Unused I					
Vials	#	Containers: 1	#		Carlotte Control	#		#	
Unp-		1 Liter Amb.		1 Liter F	Plastic		16	oz Amb.	
HCL-		500 mL Amb.		500 mL				Amb/Clear	
Meoh-		250 mL Amb.		250 mL				Amb/Clear	
Bisulfate-		Col./Bacteria		Flashp	*****			Amb/Clear	
DI-		Other Plastic		Other (·			Encore	
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate		Ziplo			1		
Comments:						<u>,</u>	<u></u>		

August 3, 2022

Jo Palmer ATC Group Services LLC - Vermont 51 Knight Lane, PO Box 1486 Williston, VT 05495

Project Location: Grafton, VT

Client Job Number:

Project Number: 280EM00864

Laboratory Work Order Number: 22G0693

Enclosed are results of analyses for samples as received by the laboratory on July 13, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
22G0693-01	5
22G0693-03	6
22G0693-04	7
22G0693-05	8
22G0693-06	9
22G0693-07	10
22G0693-09	11
22G0693-10	12
22G0693-11	13
22G0693-13	14
22G0693-14	15
22G0693-15	16
22G0693-17	17
22G0693-19	18
QC Data	19
Semivolatile Organic Compounds by - LC/MS-MS	19
B313117	19
B313159	20
Flag/Qualifier Summary	22
Certifications	23
Chain of Custody/Sample Receipt	24

REPORT DATE:

PURCHASE ORDER NUMBER:

PROJECT NUMBER:

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION:

FIELD SAMPLE #

LAB ID:

MATRIX

SAMPLE DESCRIPTION

TEST

SUB LAB

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 537.1

Qualifications:

L-03

Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the low side

biased on the low side.

Analyte & Samples(s) Qualified:

Hexafluoropropylene oxide dimer a

 $22G0693-11[Res-5], 22G0693-13[Res-9], 22G0693-14[Res-9] \\ FB], 22G0693-15[Res-8], 22G0693-17[Res-7], 22G0693-19[Res-1], \\ B313159-BSD11-12[Res-1], 22G0693-12[Res-1], \\ B313159-BSD11-12[Res-1], 22G0693-12[Res-1], \\ B313159-BSD11-12[Res-1], \\ B313159-BSD11-12[Res-$

PF-01

Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.

Analyte & Samples(s) Qualified:

13C-PFDA

22G0693-03[Res-4], 22G0693-05[Res-12], 22G0693-06[Res-12 FB]

d5-NEtFOSAA

22G0693-03[Res-4]

M3HFPO-DA

22G0693-03[Res-4]

PF-15

Surrogate recovery is outside of control limits. Unable to re-extract sample due to insufficient sample volume.

Analyte & Samples(s) Qualified:

13C-PFHxA

22G0693-14[Res-9 FB]

d5-NEtFOSAA

22G0693-14[Res-9 FB]

M3HFPO-DA

22G0693-14[Res-9 FB]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Jua Webshirsten

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-6

Sampled: 7/8/2022 09:15

Sample ID: 22G0693-01
Sample Matrix: Drinking Water

Sample Matrix: Drinking water		Sei	mivolatile Organic Con	npounds by - l	LC/MS-MS				
		M	CL/SMCL				Date	Date/Time	
Analyte	Results	RL M	IA ORSG Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluorooctanoic acid (PFOA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluorononanoic acid (PFNA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluorodecanoic acid (PFDA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
N-EtFOSAA	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
N-MeFOSAA	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 11:25	DRL
Surrogates		% Recove	ery Recovery Limi	ts	Flag/Qual				
13C-PFHxA		103	70-130					8/1/22 11:25	
M3HFPO-DA		111	70-130					8/1/22 11:25	
13C-PFDA		117	70-130					8/1/22 11:25	
d5-NEtFOSAA		112	70-130					8/1/22 11:25	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-4

Sampled: 7/8/2022 09:30

Sample ID: 22G0693-03
Sample Matrix: Drinking Water

			Semivolatile (Organic Comp	oounds by - I	LC/MS-MS				
			MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluorooctanoic acid (PFOA)	2.2	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluorooctanesulfonic acid (PFOS)	4.0	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluorononanoic acid (PFNA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluorodecanoic acid (PFDA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
N-EtFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
N-MeFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:40	DRL
Surrogates		% Rec	covery Re	ecovery Limits	1	Flag/Qual				
13C-PFHxA		125		70-130					8/1/22 11:40	
M3HFPO-DA		138	*	70-130		PF-01			8/1/22 11:40	
13C-PFDA		137	*	70-130		PF-01			8/1/22 11:40	
d5-NEtFOSAA		131	*	70-130		PF-01			8/1/22 11:40	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-4 FB

Sampled: 7/8/2022 09:25

Sample ID: 22G0693-04
Sample Matrix: Drinking Water

Sample Matrix. Drinking water		5	Semivolatile (Organic Comp	oounds by - I	.C/MS-MS				
			MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluorooctanoic acid (PFOA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluorooctanesulfonic acid (PFOS)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluorononanoic acid (PFNA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluorodecanoic acid (PFDA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
N-EtFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
N-MeFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 11:47	DRL
Surrogates		% Reco	overy Re	covery Limits	š	Flag/Qual				
13C-PFHxA		110		70-130					8/1/22 11:47	
M3HFPO-DA		112		70-130					8/1/22 11:47	
13C-PFDA		115		70-130					8/1/22 11:47	
d5-NEtFOSAA		107		70-130					8/1/22 11:47	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-12

Sampled: 7/8/2022 10:00

Sample ID: 22G0693-05
Sample Matrix: Drinking Water

			Semivolatile (Organic Comp	oounds by - I	LC/MS-MS				
			MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluorooctanoic acid (PFOA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluorooctanesulfonic acid (PFOS)	2.7	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluorononanoic acid (PFNA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluorodecanoic acid (PFDA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
N-EtFOSAA	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
N-MeFOSAA	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:41	DRL
Surrogates		% Reco	overy Re	ecovery Limits	1	Flag/Qual				
13C-PFHxA		112		70-130					8/1/22 15:41	
M3HFPO-DA		130		70-130					8/1/22 15:41	
13C-PFDA		139	*	70-130		PF-01			8/1/22 15:41	
d5-NEtFOSAA		115		70-130					8/1/22 15:41	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-12 FB

Sampled: 7/8/2022 09:58

Sample ID: 22G0693-06
Sample Matrix: Drinking Water

			Semivolatile (Organic Comp	oounds by - I	LC/MS-MS				
			MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluorooctanoic acid (PFOA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluorooctanesulfonic acid (PFOS)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluorononanoic acid (PFNA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluorodecanoic acid (PFDA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
N-EtFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
N-MeFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9		ng/L	1		EPA 537.1	7/19/22	8/1/22 15:48	DRL
Surrogates		% Rec	overy Re	covery Limits	i .	Flag/Qual				
13C-PFHxA		115		70-130					8/1/22 15:48	
M3HFPO-DA		86.8		70-130					8/1/22 15:48	
13C-PFDA		132	*	70-130		PF-01			8/1/22 15:48	
d5-NEtFOSAA		108		70-130					8/1/22 15:48	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-10

Sampled: 7/8/2022 11:00

Sample ID: 22G0693-07
Sample Matrix: Drinking Water

		S	emivolatile Organic Co	ompounds by - l	LC/MS-MS				
Analyte	Results		MCL/SMCL MA ORSG Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L	1	riag/Quai	EPA 537.1	7/19/22		DRL
Perfluorohexanoic acid (PFHxA)			0	-				8/1/22 15:55	
,	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluorooctanoic acid (PFOA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluorononanoic acid (PFNA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluorodecanoic acid (PFDA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
N-EtFOSAA	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
N-MeFOSAA	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	ng/L	1		EPA 537.1	7/19/22	8/1/22 15:55	DRL
Surrogates		% Recov	very Recovery Lin	nits	Flag/Qual				
13C-PFHxA		114	70-130					8/1/22 15:55	
M3HFPO-DA		123	70-130					8/1/22 15:55	
13C-PFDA		130	70-130					8/1/22 15:55	
d5-NEtFOSAA		118	70-130					8/1/22 15:55	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-3

Sampled: 7/8/2022 12:40

103

Sample ID: 22G0693-09
Sample Matrix: Drinking Water

d5-NEtFOSAA

		S	Semivolatile (Organic Comp	ounds by - I	LC/MS-MS				
			MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluorohexanoic acid (PFHxA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluoroheptanoic acid (PFHpA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluorooctanoic acid (PFOA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluorooctanesulfonic acid (PFOS)	3.5	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluorononanoic acid (PFNA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluorodecanoic acid (PFDA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
N-EtFOSAA	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluoroundecanoic acid (PFUnA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
N-MeFOSAA	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluorododecanoic acid (PFDoA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Perfluorotetradecanoic acid (PFTA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
11Cl-PF3OUdS (F53B Major)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
9Cl-PF3ONS (F53B Minor)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.1		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:09	DRL
Surrogates		% Reco	very Re	covery Limits		Flag/Qual				
13C-PFHxA		95.7		70-130					8/1/22 16:09	
M3HFPO-DA		113		70-130					8/1/22 16:09	
13C-PFDA		121		70-130					8/1/22 16:09	

70-130

8/1/22 16:09

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022

Field Sample #: Res-3 FB

Sampled: 7/8/2022 12:38

Sample ID: 22G0693-10
Sample Matrix: Drinking Water

		S	Semivolatile Or	ganic Com	pounds by - I	LC/MS-MS				
		1	MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluorooctanoic acid (PFOA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluorooctanesulfonic acid (PFOS)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluorononanoic acid (PFNA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluorodecanoic acid (PFDA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
N-EtFOSAA	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
N-MeFOSAA	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8		ng/L	1		EPA 537.1	7/19/22	8/1/22 16:16	DRL
Surrogates		% Reco	very Reco	very Limit	s	Flag/Qual				
13C-PFHxA		109		70-130					8/1/22 16:16	
M3HFPO-DA		99.4		70-130					8/1/22 16:16	
13C-PFDA		111		70-130					8/1/22 16:16	
d5-NEtFOSAA		106		70-130					8/1/22 16:16	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-5

Sampled: 7/8/2022 13:10

Sample ID: 22G0693-11
Sample Matrix: Drinking Water

Sample Matrix: Drinking Water		•	Semivolatile Organic Co	mnounds by	C/MS-MS				
				mpounus by - 1	LC/M3-M3				
			MCL/SMCL				Date	Date/Time	
Analyte	Results	RL	MA ORSG Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
N-EtFOSAA	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
N-MeFOSAA	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.0	ng/L	1	L-03	EPA 537.1	7/20/22	7/28/22 20:16	DRL
11Cl-PF3OUdS (F53B Major)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
9Cl-PF3ONS (F53B Minor)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.0	ng/L	1		EPA 537.1	7/20/22	7/28/22 20:16	DRL
Surrogates		% Reco	very Recovery Lim	its	Flag/Qual				
13C-PFHxA		97.9	70-130					7/28/22 20:16	
M3HFPO-DA		107	70-130					7/28/22 20:16	
13C-PFDA		98.2	70-130					7/28/22 20:16	
d5-NEtFOSAA		88.3	70-130					7/28/22 20:16	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-9

Sampled: 7/8/2022 13:40

Sample ID: 22G0693-13
Sample Matrix: Drinking Water

		S	Semivolatile Or	ganic Comp	oounds by - I	.C/MS-MS				
		1	MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluorooctanoic acid (PFOA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluorooctanesulfonic acid (PFOS)	2.4	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluorononanoic acid (PFNA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluorodecanoic acid (PFDA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
N-EtFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
N-MeFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9		ng/L	1	L-03	EPA 537.1	7/20/22	7/28/22 20:31	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:31	DRL
Surrogates		% Reco	very Reco	very Limits	i .	Flag/Qual				
13C-PFHxA		94.0		70-130					7/28/22 20:31	
M3HFPO-DA		106		70-130					7/28/22 20:31	
13C-PFDA		101		70-130					7/28/22 20:31	
d5-NEtFOSAA		96.7		70-130					7/28/22 20:31	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-9 FB

Sampled: 7/8/2022 13:38

Sample ID: 22G0693-14

Sample Matrix: Drinking Water

Sample Matrix: Drinking water			Semivolatil	e Organic Comp	oounds by - I	LC/MS-MS				
			MCL/SMCI					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluorooctanoic acid (PFOA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluorooctanesulfonic acid (PFOS)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluorononanoic acid (PFNA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluorodecanoic acid (PFDA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
N-EtFOSAA	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
N-MeFOSAA	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8		ng/L	1	L-03	EPA 537.1	7/20/22	7/28/22 20:45	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:45	DRL
Surrogates		% Rec	covery 1	Recovery Limits	3	Flag/Qual				
13C-PFHxA		7.21	*	70-130		PF-15			7/28/22 20:45	
M3HFPO-DA		9.01	*	70-130		PF-15			7/28/22 20:45	
13C-PFDA		71.9		70-130					7/28/22 20:45	
d5-NEtFOSAA		27.8	*	70-130		PF-15			7/28/22 20:45	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-8

Sampled: 7/8/2022 14:10

Sample ID: 22G0693-15
Sample Matrix: Drinking Water

		Se	emivolatile Or	ganic Com	pounds by - I	.C/MS-MS				
		N	MCL/SMCL					Date	Date/Time	
Analyte	Results	RL I	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluorohexanoic acid (PFHxA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluoroheptanoic acid (PFHpA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluorooctanoic acid (PFOA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluorooctanesulfonic acid (PFOS)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluorononanoic acid (PFNA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluorodecanoic acid (PFDA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
N-EtFOSAA	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluoroundecanoic acid (PFUnA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
N-MeFOSAA	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluorododecanoic acid (PFDoA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Perfluorotetradecanoic acid (PFTA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.2		ng/L	1	L-03	EPA 537.1	7/20/22	7/28/22 20:52	DRL
11Cl-PF3OUdS (F53B Major)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
9Cl-PF3ONS (F53B Minor)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.2		ng/L	1		EPA 537.1	7/20/22	7/28/22 20:52	DRL
Surrogates		% Recov	very Reco	very Limits	S	Flag/Qual				
13C-PFHxA		101	,	70-130					7/28/22 20:52	
M3HFPO-DA		116		70-130					7/28/22 20:52	
13C-PFDA		112		70-130					7/28/22 20:52	
d5-NEtFOSAA		101		70-130					7/28/22 20:52	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-7

Sampled: 7/8/2022 14:30

Sample ID: 22G0693-17
Sample Matrix: Drinking Water

		S	Semivolatile O	rganic Comp	pounds by - I	.C/MS-MS				
			MCL/SMCL					Date	Date/Time	
Analyte	Results		MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Perfluorobutanesulfonic acid (PFBS)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluoroheptanoic acid (PFHpA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluorooctanoic acid (PFOA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluorooctanesulfonic acid (PFOS)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluorononanoic acid (PFNA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluorodecanoic acid (PFDA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
N-EtFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
N-MeFOSAA	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9		ng/L	1	L-03	EPA 537.1	7/20/22	7/28/22 21:06	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:06	DRL
Surrogates		% Reco	overy Reco	overy Limits	S	Flag/Qual				
13C-PFHxA		98.3		70-130					7/28/22 21:06	
M3HFPO-DA		112		70-130					7/28/22 21:06	
13C-PFDA		105		70-130					7/28/22 21:06	
d5-NEtFOSAA		99.5		70-130					7/28/22 21:06	

Project Location: Grafton, VT Sample Description: Work Order: 22G0693

Date Received: 7/13/2022
Field Sample #: Res-1

Sampled: 7/8/2022 15:00

Sample ID: 22G0693-19
Sample Matrix: Drinking Water

Semivolatile Organic Compounds by - LC/MS-MS											
			MCL/SMCL					Date	Date/Time		
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Perfluorobutanesulfonic acid (PFBS)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluorohexanoic acid (PFHxA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluoroheptanoic acid (PFHpA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluorooctanoic acid (PFOA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluorooctanesulfonic acid (PFOS)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluorononanoic acid (PFNA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluorodecanoic acid (PFDA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
N-EtFOSAA	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluoroundecanoic acid (PFUnA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
N-MeFOSAA	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluorododecanoic acid (PFDoA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluorotridecanoic acid (PFTrDA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Perfluorotetradecanoic acid (PFTA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.0		ng/L	1	L-03	EPA 537.1	7/20/22	7/28/22 21:20	DRL	
11Cl-PF3OUdS (F53B Major)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
9Cl-PF3ONS (F53B Minor)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.0		ng/L	1		EPA 537.1	7/20/22	7/28/22 21:20	DRL	
Surrogates		% Rec	overy Re	covery Limits		Flag/Qual					
13C-PFHxA		96.0		70-130					7/28/22 21:20		
M3HFPO-DA		103		70-130					7/28/22 21:20		
13C-PFDA		101		70-130					7/28/22 21:20		
d5-NEtFOSAA		98.2		70-130					7/28/22 21:20		

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Reporting

A	D 1	Reporting	T.L'	Spike	Source	0/DEC	70KEC	DDD	KrD t ::4	NT /
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B313117 - EPA 537.1										
Blank (B313117-BLK1)				Prepared: 07	/19/22 Analy	zed: 08/01/2	2			
erfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L							
erfluorohexanoic acid (PFHxA)	ND	1.9	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	1.9	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	1.9	ng/L							
erfluorooctanoic acid (PFOA)	ND	1.9	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	1.9	ng/L							
erfluorononanoic acid (PFNA)	ND	1.9	ng/L							
erfluorodecanoic acid (PFDA)	ND	1.9	ng/L							
-EtFOSAA	ND	1.9	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L							
-MeFOSAA	ND	1.9	ng/L							
erfluorododecanoic acid (PFDoA)	ND	1.9	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.9	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	1.9	ng/L							
Iexafluoropropylene oxide dimer acid HFPO-DA)	ND	1.9	ng/L							
Cl-PF3OUdS (F53B Major)	ND	1.9	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.9	ng/L							
8-dioxa-3H-perfluorononanoic acid	ND	1.9	ng/L							
ADONA)										
urrogate: 13C-PFHxA	47.4		ng/L	38.6		123	70-130			
urrogate: M3HFPO-DA	48.2		ng/L	38.6		125	70-130			
urrogate: 13C-PFDA	48.7		ng/L	38.6		126	70-130			
urrogate: d5-NEtFOSAA	196		ng/L	154		127	70-130			
CS (B313117-BS1)				Prepared: 07	/19/22 Analy	zed: 08/01/2	2			
Perfluorobutanesulfonic acid (PFBS)	9.54	1.9	ng/L	8.61		111	70-130			
erfluorohexanoic acid (PFHxA)	10.3	1.9	ng/L	9.70		107	70-130			
erfluorohexanesulfonic acid (PFHxS)	10.3	1.9	ng/L	8.87		116	70-130			
erfluoroheptanoic acid (PFHpA)	10.8	1.9	ng/L	9.70		111	70-130			
erfluorooctanoic acid (PFOA)	9.09	1.9	ng/L	9.70		93.7	70-130			
erfluorooctanesulfonic acid (PFOS)	10.3	1.9	ng/L	9.00		115	70-130			
erfluorononanoic acid (PFNA)	11.6	1.9	ng/L	9.70		120	70-130			
erfluorodecanoic acid (PFDA)	11.5	1.9	ng/L	9.70		118	70-130			
I-EtFOSAA	8.97	1.9	ng/L	9.70		92.5	70-130			
erfluoroundecanoic acid (PFUnA)	11.0	1.9	ng/L	9.70		113	70-130			
-MeFOSAA	8.72	1.9	ng/L	9.70		89.9	70-130			
erfluorododecanoic acid (PFDoA)	10.4	1.9	ng/L	9.70		107	70-130			
erfluorotridecanoic acid (PFTrDA)		1.9	ng/L	9.70		107	70-130			
erfluorotetradecanoic acid (PFTA)	10.1	1.9	ng/L ng/L	9.70 9.70		104	70-130			
lexafluoropropylene oxide dimer acid	10.0	1.9	ng/L ng/L							
HFPO-DA)	6.83	1.9	ng/L	9.70		70.4	70-130			
1Cl-PF3OUdS (F53B Major)	10.5	1.9	ng/L	9.15		115	70-130			
Cl-PF3ONS (F53B Minor)	10.7	1.9	ng/L	9.05		118	70-130			
,8-dioxa-3H-perfluorononanoic acid ADONA)	9.27	1.9	ng/L	9.17		101	70-130			
urrogate: 13C-PFHxA	34.2		ng/L	38.8		88.1	70-130			
surrogate: M3HFPO-DA	33.5		ng/L	38.8		86.3	70-130			
urrogate: 13C-PFDA	37.2		ng/L	38.8		95.8	70-130			
surrogate: d5-NEtFOSAA	145		ng/L	155		93.4	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

		Donorting		Cailea	C		0/.DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B313117 - EPA 537.1										
.CS Dup (B313117-BSD1)				Prepared: 07	//19/22 Analy	yzed: 08/01/2	22			
Perfluorobutanesulfonic acid (PFBS)	9.41	2.0	ng/L	8.86		106	70-130	1.43	30	
Perfluorohexanoic acid (PFHxA)	11.1	2.0	ng/L	9.99		111	70-130	6.91	30	
Perfluorohexanesulfonic acid (PFHxS)	10.5	2.0	ng/L	9.13		116	70-130	2.86	30	
Perfluoroheptanoic acid (PFHpA)	11.3	2.0	ng/L	9.99		113	70-130	4.29	30	
Perfluorooctanoic acid (PFOA)	9.72	2.0	ng/L	9.99		97.3	70-130	6.67	30	
Perfluorooctanesulfonic acid (PFOS)	10.7	2.0	ng/L	9.27		116	70-130	4.00	30	
Perfluorononanoic acid (PFNA)	11.9	2.0	ng/L	9.99		119	70-130	2.16	30	
Perfluorodecanoic acid (PFDA)	11.6	2.0	ng/L	9.99		116	70-130	0.874	30	
N-EtFOSAA	9.14	2.0	ng/L	9.99		91.5	70-130	1.89	30	
Perfluoroundecanoic acid (PFUnA)	11.3	2.0	ng/L	9.99		113	70-130	2.87	30	
N-MeFOSAA	9.62	2.0	ng/L	9.99		96.3	70-130	9.84	30	
Perfluorododecanoic acid (PFDoA)	10.6	2.0	ng/L	9.99		106	70-130	1.96	30	
Perfluorotridecanoic acid (PFTrDA)	10.5	2.0	ng/L	9.99		105	70-130	4.08	30	
Perfluorotetradecanoic acid (PFTA)	10.2	2.0	ng/L	9.99		102	70-130	2.01	30	
Hexafluoropropylene oxide dimer acid HFPO-DA)	7.34	2.0	ng/L	9.99		73.5	70-130	7.17	30	
1Cl-PF3OUdS (F53B Major)	9.55	2.0	ng/L	9.42		101	70-130	9.69	30	
PCI-PF3ONS (F53B Minor)	10.7	2.0	ng/L	9.32		115	70-130	0.0111	30	
,8-dioxa-3H-perfluorononanoic acid ADONA)	10.1	2.0	ng/L	9.44		107	70-130	8.60	30	
Surrogate: 13C-PFHxA	39.8		ng/L	39.9		99.7	70-130			
Surrogate: M3HFPO-DA	40.2		ng/L	39.9		101	70-130			
Surrogate: 13C-PFDA	41.4		ng/L	39.9		104	70-130			
Surrogate: d5-NEtFOSAA	161		ng/L	160		100	70-130			
ouriogate. do 11Ett obriti										
-										
Batch B313159 - EPA 537.1 Blank (B313159-BLK1)		10	<i>T</i>	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	22			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	22			
Blank (B313159 - EPA 537.1 Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA)	ND ND	1.9	ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	22			
Blank (B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS)	ND ND ND	1.9 1.9	ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	22			
Blank (B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA)	ND ND ND	1.9 1.9 1.9	ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Blank (B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorococtanoic acid (PFOA)	ND ND ND ND	1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHxA) Perfluorocotanoic acid (PFHpA) Perfluorocotanoic acid (PFOA) Perfluorocotanosulfonic acid (PFOS)	ND ND ND ND ND	1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorocotanoic acid (PFOA) Perfluorocotanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA)	ND ND ND ND ND ND ND ND	1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	22			
Perfluoronetanoic acid (PFDA) Perfluorooctanoic acid (PFOS) Perfluorooctanoic acid (PFOS) Perfluoronetanoic acid (PFHA) Perfluorooctanoic acid (PFDA) Perfluorooctanoic acid (PFOA) Perfluoronetanoic acid (PFOA) Perfluoronetanoic acid (PFOS) Perfluoronetanoic acid (PFNA) Perfluorodecanoic acid (PFDA)	ND	1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Perfluorooctanoic acid (PFDA) Perfluoroonanoic acid (PFDA) Perfluorooctanoic acid (PFDA)	ND	1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanoic acid (PFDA) Perfluoroctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFDA) Perfluoroundecanoic acid (PFUA)	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Blank (B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanoic acid (PFDA) Perfluoroctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorodecanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Blank (B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanoic acid (PFDA) Perfluoroctanesulfonic acid (PFOS) Perfluorodecanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDoA)	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanoic acid (PFDA) Perfluoroctanoic acid (PFOA) Perfluorodecanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDoA) Perfluorododecanoic acid (PFDoA) Perfluorododecanoic acid (PFDoA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTDA)	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanoic acid (PFHpA) Perfluoroctanoic acid (PFOA) Perfluoroctanesulfonic acid (PFOS) Perfluorodecanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTDA) Perfluorotridecanoic acid (PFTDA) Perfluorotridecanoic acid (PFTDA) Perfluorotridecanoic acid (PFTA)	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluoroctanoic acid (PFHpA) Perfluoroctanoic acid (PFOA) Perfluoroctanesulfonic acid (PFOS) Perfluoroctanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorododecanoic acid (PFDA) Perfluoroctanesulfonic acid (PFDA) Perfluoroundecanoic acid (PFDA) Perfluorotetradecanoic acid (PFTDA) Perfluorotetradecanoic acid (PFTA) Hexafluoropropylene oxide dimer acid HFPO-DA)	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxA) Perfluoroctanoic acid (PFDA) Perfluoroctanoic acid (PFOA) Perfluorodecanoic acid (PFNA) Perfluorodecanoic acid (PFNA) Perfluoroundecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTA) Perfluorotridecanoic acid (PFTA) Perfluorotridecanoic acid (PFTA) Perfluoropopopopopopolo exide dimer acid HFPO-DA) ILCI-PF3OUdS (F53B Major)	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	222			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxA) Perfluoroctanoic acid (PFHpA) Perfluoroctanoic acid (PFOA) Perfluoroctanoic acid (PFOA) Perfluorodecanoic acid (PFNA) Perfluorodecanoic acid (PFNA) Perfluoroundecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTA)	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07	7/20/22 Analy	yzed: 07/28/2	22			
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxA) Perfluoroctanoic acid (PFHpA) Perfluoroctanoic acid (PFOA) Perfluoroctanesulfonic acid (PFOA) Perfluorodecanoic acid (PFNA) Perfluoroundecanoic acid (PFDA) N-MeFOSAA Perfluorododecanoic acid (PFDA) Perfluorottridecanoic acid (PFTA)	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		7/20/22 Analy					
Batch B313159 - EPA 537.1 Blank (B313159-BLK1) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxA) Perfluoroctanoic acid (PFHpA) Perfluoroctanoic acid (PFOA) Perfluoroctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) N-EtFOSAA Perfluoroundecanoic acid (PFUnA) N-MeFOSAA Perfluorotridecanoic acid (PFTDA) Perfluorotridecanoic acid (PFTA) Perfluorotridecanoic acid (PFTA)	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	38.0	1/20/22 Analy	94.6	70-130			
Batch B313159 - EPA 537.1	ND N	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		7/20/22 Analy					

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B313159 - EPA 537.1										
.CS (B313159-BS1)				Prepared: 07	7/20/22 Analy	yzed: 07/28/2	22			
Perfluorobutanesulfonic acid (PFBS)	1.21	1.9	ng/L	1.67		72.7	50-150			
erfluorohexanoic acid (PFHxA)	1.46	1.9	ng/L	1.88		77.5	50-150			
erfluorohexanesulfonic acid (PFHxS)	1.28	1.9	ng/L	1.72		74.5	50-150			
erfluoroheptanoic acid (PFHpA)	1.41	1.9	ng/L	1.88		74.8	50-150			
erfluorooctanoic acid (PFOA)	1.20	1.9	ng/L	1.88		63.7	50-150			
erfluorooctanesulfonic acid (PFOS)	1.26	1.9	ng/L	1.74		72.5	50-150			
erfluorononanoic acid (PFNA)	1.22	1.9	ng/L	1.88		65.1	50-150			
erfluorodecanoic acid (PFDA)	1.23	1.9	ng/L	1.88		65.6	50-150			
-EtFOSAA	1.40	1.9	ng/L	1.88		74.3	50-150			
erfluoroundecanoic acid (PFUnA)	1.41	1.9	ng/L	1.88		75.0	50-150			
-MeFOSAA	1.34	1.9	ng/L	1.88		71.3	50-150			
erfluorododecanoic acid (PFDoA)	1.09	1.9	ng/L	1.88		58.0	50-150			
erfluorotridecanoic acid (PFTrDA)	1.23	1.9	ng/L	1.88		65.5	50-150			
erfluorotetradecanoic acid (PFTA)	1.44	1.9	ng/L	1.88		76.8	50-150			
exafluoropropylene oxide dimer acid IFPO-DA)	1.22	1.9	ng/L	1.88		64.8	50-150			
Cl-PF3OUdS (F53B Major)	1.03	1.9	ng/L	1.77		57.8	50-150			
Cl-PF3ONS (F53B Minor)	1.13	1.9	ng/L	1.75		64.2	50-150			
8-dioxa-3H-perfluorononanoic acid ADONA)	1.13	1.9	ng/L	1.78		63.3	50-150			
urrogate: 13C-PFHxA	27.1		ng/L	37.6		72.2	70-130			
urrogate: M3HFPO-DA	27.7		ng/L	37.6		73.6	70-130			
urrogate: 13C-PFDA	28.4		ng/L	37.6		75.4	70-130			
urrogate: d5-NEtFOSAA	118		ng/L	150		78.7	70-130			
CS Dup (B313159-BSD1)				Prepared: 07	7/20/22 Analy	yzed: 07/28/2	22			
erfluorobutanesulfonic acid (PFBS)	1.20	1.9	ng/L	1.66		72.1	50-150	1.08	50	
erfluorohexanoic acid (PFHxA)	1.27	1.9	ng/L	1.87		68.0	50-150	13.4	50	
erfluorohexanesulfonic acid (PFHxS)	1.24	1.9	ng/L	1.71		72.1	50-150	3.53	50	
erfluoroheptanoic acid (PFHpA)	1.29	1.9	ng/L	1.87		68.6	50-150	8.97	50	
erfluorooctanoic acid (PFOA)	1.48	1.9	ng/L	1.87		79.1	50-150	21.3	50	
erfluorooctanesulfonic acid (PFOS)	1.38	1.9	ng/L	1.74		79.2	50-150	8.63	50	
erfluorononanoic acid (PFNA)	1.34	1.9	ng/L	1.87		71.6	50-150	9.23	50	
erfluorodecanoic acid (PFDA)	1.26	1.9	ng/L	1.87		67.2	50-150	2.09	50	
-EtFOSAA	1.39	1.9	ng/L	1.87		73.9	50-150	0.831	50	
erfluoroundecanoic acid (PFUnA)	1.40	1.9	ng/L	1.87		74.6	50-150	0.873	50	
-MeFOSAA	1.72	1.9	ng/L	1.87		91.8	50-150	24.9	50	
erfluorododecanoic acid (PFDoA)	1.21	1.9	ng/L	1.87		64.3	50-150	10.0	50	
erfluorotridecanoic acid (PFTrDA)	1.34	1.9	ng/L	1.87		71.5	50-150	8.51	50	
erfluorotetradecanoic acid (PFTA)	1.40	1.9	ng/L	1.87		74.8	50-150	3.00	50	
exafluoropropylene oxide dimer acid IFPO-DA)	0.898	1.9	ng/L	1.87		47.9 *	50-150	30.3	50	L-03
Cl-PF3OUdS (F53B Major)	1.27	1.9	ng/L	1.77		71.9	50-150	21.4	50	
Cl-PF3ONS (F53B Minor)	1.13	1.9	ng/L	1.75		64.7	50-150	0.493	50	
8-dioxa-3H-perfluorononanoic acid ADONA)	1.16	1.9	ng/L	1.77		65.7	50-150	3.31	50	
urrogate: 13C-PFHxA	30.4		ng/L	37.5		81.1	70-130			
urrogate: M3HFPO-DA	30.7		ng/L	37.5		81.8	70-130			
urrogate: 13C-PFDA	33.8		ng/L	37.5		90.2	70-130			
urrogate: d5-NEtFOSAA	145		ng/L	150		96.6	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-03	Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for thi compound is likely to be biased on the low side.
PF-01	Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.
PF-15	Surrogate recovery is outside of control limits. Unable to re-extract sample due to insufficient sample volume.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

EPA 537.1 in Drinking W	ater

Perfluorobutanesulfonic acid (PFBS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorohexanoic acid (PFHxA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorohexanesulfonic acid (PFHxS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluoroheptanoic acid (PFHpA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorooctanoic acid (PFOA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH
Perfluorooctanesulfonic acid (PFOS)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH
Perfluorononanoic acid (PFNA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorodecanoic acid (PFDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
N-EtFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluoroundecanoic acid (PFUnA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
N-MeFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorododecanoic acid (PFDoA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorotridecanoic acid (PFTrDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorotetradecanoic acid (PFTA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
11Cl-PF3OUdS (F53B Major)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
9Cl-PF3ONS (F53B Minor)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO 17025:2017	100033	03/1/2024
MA	Massachusetts DEP	M-MA100	06/30/2023
CT	Connecticut Department of Public Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2023
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2023
RI	Rhode Island Department of Health	LAO00373	12/30/2022
NC	North Carolina Div. of Water Quality	652	12/31/2022
NJ	New Jersey DEP	MA007 NELAP	06/30/2023
FL	Florida Department of Health	E871027 NELAP	06/30/2023
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2023
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2023
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2022
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2022
NC-DW	North Carolina Department of Health and Human Services	25703	07/31/2023
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2023
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2022

Glassware in freezer? Y / IN Prepackaged Cooler responsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will not be held accountable. Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? Total Number Of from prepacked coolers ¹ Matrix Codes: GW = Ground Water WW = Waste Water *Pace Analytical is not DW = Drinking Water 2 <u>Preservation Codes:</u> | = Iced Courier Use Only X = Sodium Hydroxide B = Sodium Bisulfate **SOL** = Solid O = Other (please Preservation Code O = Other (please define) S = Sulfuric Acid BACTERIA N = Nitric Acid GLASS A = Air S = Soil SL = Studge PLASTIC ENCORE VIALS M = Methanol T = Sodium Thiosulfate define) possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U Please use the following codes to indicate NELACIONA Alba LAP, LLC Accredited Chromatogram
AfHA-LAP, LLC Code column above: ANALYSIS REQUESTED Unknown Doc # 381 Rev 5_07/13/2021 CT RCP Required RCP Certification Form Required MCP Certification Form Required MA MCP Required WRTA MA State DW Required ス R 39 Spruce Street East Longmeadow, MA 01028 8 VIALS GLASS PLASTIC BACTERIA Highrest States N. 18-24 Field Filtered Field Filtered Lab to Filter Lab to Filter School N MBTA NON SOXHLET SOXHLE CHAIN OF CUSTOBY PECORD 00 0 0 schoons Dalmo Conc Code Q http://www.pacelabs.com Municipality Due Date: Brownfield *Matrix Code FB \mathcal{Z} 10-Day EXCEL PWSID# 3-рау 4-Day CLP Like Data Pkg Required; COMP/GRAB Q PFAS 10-Day (std) POF EXTRACT Ending Date/Time 8 A58 8 1058 **公** Government Email To: 2975 ax To #: ormat: Federal Other: 7-Day -Day -Day SMOJEE City Gent Comment Project Entity Beginning Date/Time s COC's and Support Requests W/21/92 te/Time: 7-19, 22 grs-10 FB FB <u>ت</u> پ te/Time: Client Sample ID / Description FB Phone: 413-525-2332 Fax: 413-525-6405 Date/Time: 48-4 Resul g (es -3 9 65 Pace Analytical * \tilde{c} 0 ignature] Pace Quote Name/Numbe (signature) Received by (signature) Work Order Pace nquighed by Project Location: Invoice Recipient: Project Manager; Project Number: Sampled By: Address: Page 24 of 26

Page 25 of 26

returned within 15 days of Please fill out completely, sign, date and retain the flow controllers must be receipt or rental fees will Controller ID For summa canister and Summa canisters and information please refer to Con-Test's Air Media Soxhlet Non Soxhlet yellow copy for your IA = INDOOR AIR AMB = AMBIENT SS = SUB SLAB East Longmeadow, MA 01028

ANALYSIS REQUESTED flow controller PCB ONLY SG = SOIL GAS 120-0cm records Matrix Codes: 出一年の apply BL = BLANK O = Other NELAC and AlHA-LAP, LLC Accredited D = DUP 5итта Сап ₽ Lab Receipt Pressure Chromatogram AIHA-LAP,LLC ᆵ Final Pressure Initial Pressure Other Please weethe following des to indicate vossible sample H - High; M - Medium; L - Low; C - Clean; U - Unknown Code column above: DOC #378 REV3_11232021 WRTA X 3 MA MCP Required MCP Certification Form Required CT RCP Requires MWRA NOP Certification Form Require Othe School MBTA ഗ്യ concentration within the Conc Matrix Code N N CHAIN OF DUSTODY RECORD (AIR) B http://www.pacelabs.com Flow Rate Municipality Brownfield 10-Day EXCEL 3-Day 4-Day CLP Like Data Pkg Required: **Q** Dura ion μÖd Government 2 14C8 340 1338 14.20 Date/Time 1478 8 Email To: 208 Due Date: <u>ユ</u> 130 18 18 Fax To #: Ending ormat: Other: Federai Collection Data 7-Day 2-Day -Day 25.53 City Project Entity Beginning Date/Time 52 5 Client Sample ID / Description Phone: 413-525-2332 FR 8FB TER 13/22 9. Fax: 413-525-6405 w.pacelabs.com Date/Time: Date/Time: Date/Time Client Use Seg 1 568-60 63 2 8 Face Analytical JJ CO CO 72 2 16 7 B 2 (signature) Pace Quote Name/Number; by: (signature) ived by (signature) d by: (signature) PATRICA Work Order# Lab Use Invoice Recipient: Project Location: Project Number: Project Manager: Revinquished by: Sampled By: Comments: Address: Phone:

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 www.pacelabs.com

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	Allres	will be brought	to the atte	indon or the	Cilcili - Sta	ite ilue of i	313 6		
Receive	d By	ÜÜ		Date	7132	>	Time	1645	
How were the	•	In Cooler		No Cooler	-	On Ice	<u> </u>	No Ice	
receive	ea?	Direct From	Sample			Ambient		Melted Ice	
Were sampl	es within	Within			By Gun #	3	Actual Ten	19 22-D	
Tempura		2-6°C	-		By Blank #		Actual Ten	1p -	
	ustody Sea		11/0		•	mples Tampe	ered with?	Ω તિ	
	OC Relind		- 1		n Agree With	h Samples?			
		eaking/loose cap	s on any sa		ř				
Is COC in ink	-				iples receive	ed within hold	_	T	
Did COC in		Client?	Ţ	Analysis?	T	Sampler		T	
pertinent Info		Project?		ID's?		Collection Da	ites/Times?		
		filled out and leg	ible?	<u> </u>					
	ere Lab to	Filters?	_F		•	s notified?			***************************************
Are there R		<u> </u>		Who was					
Are there Sho		r_		Who was					
		ithin holding time				e enough Vo	lume?	<u> </u>	
	7	ce where applica	ble?	N bd	MS/MSD?				
		iners Used?	<u> </u>			nples require	<u> </u>		
Were trip blan		ave the proper p	<u> </u>	La Asid	On COC?		Base		
Vials			H? [ʎ]	Acid 💮		#	Dase		ť
Unp-	77	1 Liter Amb.		1 Liter F	Plactic	#	16	oz Amb.	*
HCL-		500 mL Amb.		500 mL				Amb/Clear	
Meoh-		250 mL Amb.		250 mL		36		Amb/Clear	+
Bisulfate-		Col./Bacteria		Flash				Amb/Clear	+
DI-		Other Plastic		Other (ncore	+
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate		Ziplo					
				Unused I			l		
Vials	#	Containers:	1			#			# 1
Unp-		1 Liter Amb.		1 Liter F	Plastic		16	oz Amb.	
HCL-		500 mL Amb.		500 mL				\mb/Clear	
Meoh-		250 mL Amb.		250 mL				Amb/Clear	
Bisulfate-		Col./Bacteria		Flashı				\mb/Clear	
DI-		Other Plastic		Other (ncore	
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate		Ziplo	ock				
Comments:									